【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 5G基站光纤连接问题(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员

✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解

💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导

👏 感谢大家的订阅➕ 和 喜欢💗

📎在线评测链接

https://app5938.acapp.acwing.com.cn/contest/2/problem/OD1072

🌍 评测功能需要 ⇒ 订阅专栏 ⇐ 后私信联系清隆解锁~

🍓OJ题目截图

在这里插入图片描述

文章目录

    • 📎在线评测链接
    • 🍓OJ题目截图
    • 🍿 5G基站光纤连接问题
      • 问题描述
      • 输入格式
      • 输出格式
      • 样例输入
        • 样例 1
        • 样例 2
        • 样例 3
      • 样例输出
        • 样例 1 输出
        • 样例 2 输出
        • 样例 3 输出
      • 样例解释
        • 样例 1 解释
        • 样例 2 解释
        • 样例 3 解释
      • 数据范围
      • 题解
      • 参考代码

🍿 5G基站光纤连接问题

问题描述

K小姐是一家通信公司的网络工程师,她最近被分配了一项任务:在某个城市建设5G网络。该城市已经选定了 n n n 个地点作为5G基站的位置,编号从 1 1 1 n n n。为了确保所有基站能够互联互通,K小姐需要在这些基站之间架设光纤进行连接。不同基站之间架设光纤的成本各不相同,而且有些基站之间已经存在光纤相连。K小姐的任务是设计一个算法,计算出能够联通所有基站的最小成本。需要注意的是,基站的联通具有传递性,即如果基站 A A A 与基站 B B B 架设了光纤,基站 B B B 与基站 C C C 也架设了光纤,那么基站 A A A 与基站 C C C 也视为可以互相联通。

输入格式

第一行输入一个正整数 n n n,表示基站的个数,其中 0 < n ≤ 20 0 < n \leq 20 0<n20

第二行输入一个正整数 m m m,表示具备光纤直连条件的基站对的数目,其中 0 < m < n ( n − 1 ) 2 0 < m < \frac{n(n-1)}{2} 0<m<2n(n1)

从第三行开始连续输入 m m m 行数据,每行的格式为 x y z p x\ y\ z\ p x y z p,其中 x x x y y y 表示基站的编号,满足 0 < x ≤ n 0 < x \leq n 0<xn 0 < y ≤ n 0 < y \leq n 0<yn x ≠ y x \neq y x=y; z z z 表示在 x x x y y y 之间架设光纤的成本,满足 0 < z < 100 0 < z < 100 0<z<100; p p p 表示是否已存在光纤连接,取值为 0 0 0 1 1 1,其中 0 0 0 表示未连接,而 1 1 1 表示已连接。

输出格式

如果给定条件可以建设成功互联互通的5G网络,则输出最小的建设成本;如果给定条件无法建设成功互联互通的5G网络,则输出 − 1 -1 1

样例输入

样例 1
3
3
1 2 3 0
1 3 1 0
2 3 5 0
样例 2
3
1
1 2 5 0
样例 3
3
3
1 2 3 0
1 3 1 0
2 3 5 1

样例输出

样例 1 输出
4
样例 2 输出
-1
样例 3 输出
1

样例解释

样例 1 解释

只需要在基站 1 1 1 和基站 2 2 2 之间,以及基站 2 2 2 和基站 3 3 3 之间铺设光纤,其成本为 3 + 1 = 4 3 + 1 = 4 3+1=4

样例 2 解释

基站 3 3 3 无法与其他基站连接,因此无法建设成功互联互通的5G网络,输出 − 1 -1 1

样例 3 解释

基站 2 2 2 和基站 3 3 3 已有光纤相连,只需要在基站 1 1 1 和基站 3 3 3 之间铺设光纤,其成本为 1 1 1

数据范围

  • 0 < n ≤ 20 0 < n \leq 20 0<n20
  • 0 < m < n ( n − 1 ) 2 0 < m < \frac{n(n-1)}{2} 0<m<2n(n1)
  • 0 < x , y ≤ n 0 < x, y \leq n 0<x,yn, x ≠ y x \neq y x=y
  • 0 < z < 100 0 < z < 100 0<z<100
  • p ∈ { 0 , 1 } p \in \{0, 1\} p{0,1}

题解

这是一个经典的最小生成树问题,可以使用 Kruskal 算法或 Prim 算法求解。这里我们采用 Kruskal 来解决,首先将所有已经存在光纤连接的基站对进行合并,然后按照架设光纤的成本从小到大排序,依次尝试连接未连通的基站对。如果连接后不会形成环路,则将该条边加入最小生成树中。当所有基站都被连通后,最小生成树的边权之和就是最小的建设成本。

如果最终无法将所有基站连通,则输出 − 1 -1 1

参考代码

  • Python
# 并查集
class UnionFind:def __init__(self, n):self.parent = list(range(n + 1))self.rank = [0] * (n + 1)def find(self, x):if self.parent[x] != x:self.parent[x] = self.find(self.parent[x])return self.parent[x]def union(self, x, y):px, py = self.find(x), self.find(y)if px == py:returnif self.rank[px] < self.rank[py]:self.parent[px] = pyelif self.rank[px] > self.rank[py]:self.parent[py] = pxelse:self.parent[py] = pxself.rank[px] += 1n = int(input())
m = int(input())
uf = UnionFind(n)
edges = []for _ in range(m):x, y, w, p = map(int, input().split())if p == 1:uf.union(x, y)else:edges.append((w, x, y))edges.sort()
cost = 0
for w, x, y in edges:if uf.find(x) != uf.find(y):uf.union(x, y)cost += wif len(set(uf.find(i) for i in range(1, n + 1))) == 1:print(cost)
else:print(-1)
  • Java
import java.util.*;class UnionFind {int[] parent;int[] rank;public UnionFind(int n) {parent = new int[n + 1];rank = new int[n + 1];for (int i = 0; i <= n; i++) {parent[i] = i;}}public int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}public void union(int x, int y) {int px = find(x);int py = find(y);if (px == py) {return;}if (rank[px] < rank[py]) {parent[px] = py;} else if (rank[px] > rank[py]) {parent[py] = px;} else {parent[py] = px;rank[px]++;}}
}public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();UnionFind uf = new UnionFind(n);List<int[]> edges = new ArrayList<>();for (int i = 0; i < m; i++) {int x = sc.nextInt();int y = sc.nextInt();int w = sc.nextInt();int p = sc.nextInt();if (p == 1) {uf.union(x, y);} else {edges.add(new int[]{w, x, y});}}edges.sort((a, b) -> a[0] - b[0]);int cost = 0;for (int[] edge : edges) {int w = edge[0];int x = edge[1];int y = edge[2];if (uf.find(x) != uf.find(y)) {uf.union(x, y);cost += w;}}Set<Integer> roots = new HashSet<>();for (int i = 1; i <= n; i++) {roots.add(uf.find(i));}if (roots.size() == 1) {System.out.println(cost);} else {System.out.println(-1);}}
}
  • Cpp
#include <iostream>
#include <vector>
#include <algorithm>using namespace std;class UnionFind {
private:vector<int> parent;vector<int> rank;public:UnionFind(int n) {parent.resize(n + 1);rank.resize(n + 1, 0);for (int i = 0; i <= n; i++) {parent[i] = i;}}int find(int x) {if (parent[x] != x) {parent[x] = find(parent[x]);}return parent[x];}void merge(int x, int y) {int px = find(x);int py = find(y);if (px == py) {return;}if (rank[px] < rank[py]) {parent[px] = py;} else if (rank[px] > rank[py]) {parent[py] = px;} else {parent[py] = px;rank[px]++;}}
};int main() {int n, m;cin >> n >> m;UnionFind uf(n);vector<vector<int>> edges;for (int i = 0; i < m; i++) {int x, y, w, p;cin >> x >> y >> w >> p;if (p == 1) {uf.merge(x, y);} else {edges.push_back({w, x, y});}}sort(edges.begin(), edges.end());int cost = 0;for (auto edge : edges) {int w = edge[0];int x = edge[1];int y = edge[2];if (uf.find(x) != uf.find(y)) {uf.merge(x, y);cost += w;}}bool success = true;int root = uf.find(1);for (int i = 2; i <= n; i++) {if (uf.find(i) != root) {success = false;break;}}if (success) {cout << cost << endl;} else {cout << -1 << endl;}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/31524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(项目实战)业务场景中学透RocketMQ5.0-事务消息在预付卡系统中的应用

1 什么是事务消息 RocketMQ中事务消息主要是解决分布式场景下各业务系统事务一致性问题&#xff0c;常见的分布式事务解决方案有传统XA事务方案、TCC、本地消息表、MQ事务等。今天我们基于RocketMQ事务消息解决预付卡系统资金账户子系统和会员积分子系统、短信子系统分布式事务…

光伏、储能一体化监控及运维解决方案

前言&#xff1a;今年以来&#xff0c;在政策利好推动下光伏、风力发电、电化学储能及抽水蓄能等新能源行业发展迅速&#xff0c;装机容量均大幅度增长&#xff0c;新能源发电已经成为新型电力系统重要的组成部分&#xff0c;同时这也导致新型电力系统比传统的电力系统更为复杂…

想要成为程序员,首先你需要掌握这这三种编程语言!

作为程序员&#xff0c;掌握多种编程语言是非常有价值的&#xff0c;因为不同的编程语言有不同的优势和适用场景。然而&#xff0c;要指定“必须掌握”的三种编程语言是相当主观的&#xff0c;因为这取决于个人的职业目标、所在行业的需求以及技术趋势。不过&#xff0c;以下三…

【深海王国】小学生都能做的APP?AppInventor、BLE蓝牙、Arduino联合开发你的第一个手机远程控制程序(7)

Hi~ (o^^o)♪, 各位深海王国的同志们&#xff0c;早上下午晚上凌晨好呀~ 辛勤工作的你今天也辛苦啦(/≧ω) 今天大都督依旧为大家带来小学生都能学会的APP制作教程&#xff0c;帮你一周内快速开发一款可以和单片机无线通讯的手机蓝牙APP&#xff0c;let’s go&#xff01; &a…

AI落地不容乐观-从神话到现实

开篇 在这儿我不是给大家泼冷水&#xff0c;而是我们一起来看一下从2022年11月左右GPT3.0掀起了一股“AI狂潮”后到现在&#xff0c;AI在商用、工业、军用下到底有没有得到了大规模应用呢&#xff1f; 这个答案每一个参与者其实心里有数那就是&#xff1a;没有。 但是呢它的…

OrangePi连接Wi-Fi步骤

下面介绍的是用终端命令行的方式配置WIFI&#xff1a; 首先输入以下命令用于扫描并查看周围的WiFi热点。也可以直接连接。 nmcli dev wifi之后会在终端打出周围所有可以连接的WiFi&#xff0c;按方向键上下可以查看显示更多&#xff0c;按q键退出。 然后同样使用nmcli命令连接…

提升教学效率的全方位解决方案

在现代教育环境中&#xff0c;教学管理的复杂性与日俱增。如何高效管理教学活动、优化教师资源、提升教学质量&#xff0c;是每个教育机构面临的重要挑战。搭贝教务教学管理系统提供了一套全面的解决方案&#xff0c;涵盖了巡检、调课代课、生源登记、监考、外派、作业发布、听…

机器学习(V)--无监督学习(六)流形学习

title: 机器学习(V)–无监督学习(二)流形学习 date: katex: true categories: Artificial IntelligenceMachine Learning tags:机器学习 cover: /img/ML-unsupervised-learning.png top_img: /img/artificial-intelligence.jpg abbrlink: 26cd5aa6 description: 流形学习 【降…

L54--- 404.左叶子之和(深搜)---Java版

1.题目描述 2.思路 递归遍历左子树 &#xff0c;然后再把左子树的和相加 3.代码实现 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val …

【Git】--Part4--多人协作

在之前的Git博客中&#xff0c;已经把Git本地相关的操作以及远程操作的介绍完了。如下&#xff1a; Git–Part1–基础操作 - 掘金 (juejin.cn)Git–Part2–分支管理 - 掘金 (juejin.cn)Git–Part3–远程操作 & 配置 & 标签管理 - 掘金 (juejin.cn) 这篇文章会介绍两种…

iptables(5)常用扩展模块

简介 之前我们已经介绍过扩展模块的简单使用,比如使用-m tcp/udp ,-m multiport参数通过--dports,--sports可以设置连续和非连续的端口范围。那么我们如何匹配其他的一些参数呢,比如源地址范围,目的地址范围,时间范围等,这就是我们这篇文章介绍的内容。 iprange扩展模块…

Eclipse使用TFS(Team Foundation Server) 超详细

Eclipse使用TFS 1、什么是TFS2、TFS和Git的区别3、签出代码4、签入代码4.1、签出以进行编辑4.2、修改本地代码4.3、签入挂起的更改4.4、签入 如果不能 签入挂起的更改&#xff0c;则先 签出以进行编辑如果 签入挂起的更改不可选中&#xff0c;则 如下操作 1、什么是TFS Team F…

音视频开发—FFmpeg 打开摄像头进行RTMP推流

实验平台&#xff1a;Ubuntu20.04 摄像头&#xff1a;普通USB摄像头&#xff0c;输出格式为YUV422 1.配置RTMP服务器推流平台 使用Nginx 配置1935端口即可&#xff0c;贴上教程地址 ubuntu20.04搭建Nginxrtmp服务器) 2.配置FFmpeg开发环境 过程较为简单&#xff0c;这里不…

决战技术管理转型:决策之道-管理中的智慧与策略

文章目录 引言一、决策的重要性二、常见的决策方式1. 理性决策&#xff08;Rational Decision Making&#xff09;2. 有限理性&#xff08;Bounded Rationality&#xff09;3. 直觉决策&#xff08;Intuitive Decision Making&#xff09;4. 循证管理&#xff08;Evidence-Base…

智能血压计,让健康“听”得见- WT588F02B血压计语音方案

一、语音血压计开发背景&#xff1a; 在快节奏的现代生活中&#xff0c;健康成为了我们最宝贵的财富。而血压&#xff0c;作为反映人体健康状态的重要指标之一&#xff0c;更是需要我们时刻关注。传统的血压计虽然能够为我们提供准确的血压数据&#xff0c;但往往因为操作复杂…

C#ListView的单元格支持添加基本及自定义任意控件

功能说明 使用ListView时&#xff0c;希望可以在单元格显示图片或其他控件&#xff0c;发现原生的ListView不支持&#xff0c;于是通过拓展&#xff0c;实现ListView可以显示任意控件的功能&#xff0c;效果如下&#xff1a; 实现方法 本来想着在单元格里面实现控件的自绘的…

20240621在飞凌的OK3588-C开发板的Buildroot系统中集成i2ctool工具

20240621在飞凌的OK3588-C开发板中打开i2ctool工具 2024/6/21 17:44 默认继承的i2c工具&#xff1a; rootrk3588-buildroot:/# rootrk3588-buildroot:/# i2c i2c-stub-from-dump i2cdump i2cset i2cdetect i2cget i2ctransfer rootrk3588-…

史上最全的整合Harbor安装教程,哈哈哈哈

一、安装docker 下载地址&#xff1a;https://download.docker.com/linux/static/stable/x86_64/docker-23.0.4.tgz 1.1 解压二进制包 wget https://download.docker.com/linux/static/stable/x86_64/docker-23.0.4.tgz tar zxvf docker-23.0.4.tgz mv docker/* /usr/bin1.2…

Flutter 实现软鼠标

文章目录 前言一、如何实现&#xff1f;1、记录鼠标偏移2、MouseRegion获取偏移3、Transform移动图标 二、完整代码三、使用示例总结 前言 flutter在嵌入式系统中运行时&#xff0c;有可能遇到drm鼠标无法使用的情况&#xff0c;但鼠标事件却可以正常接收&#xff0c;此时如果…

用Vite基于Vue3+ts+DataV+ECharts开发数据可视化大屏,即能快速开发又能保证屏幕适配

数据可视化大屏 基于 Vue3、Typescript、DataV、ECharts5 框架的大数据可视化&#xff08;大屏展示&#xff09;开发。此项目vue3实现界面&#xff0c;采用新版动态屏幕适配方案&#xff0c;全局渲染组件封装&#xff0c;支持数据动态刷新渲染、内部DataV、ECharts图表都支持自…