平台上运行很慢。。。是为什么?
明明就是简单的张量运算。。是算力资源?网络?运算设计问题?
03张量 Tensor
张量是一种特殊的数据结构,与数组和矩阵非常相似。
库
import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor
1、创建张量
data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)
[1 0 1 0] (4,) Int64
from mindspore.common.initializer import One, Normal# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())
tensor1:
[[1. 1.]
[1. 1.]]
tensor2:
[[-0.00593813 -0.00678136]
[-0.01935574 -0.00346206]]
2、张量的属性
包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。
- 形状(shape):Tensor的shape,是一个tuple。
- 数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。
- 单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。
- 占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。
- 维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。
- 元素个数(size): Tensor中所有元素的个数,是一个整数。
- 每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。
3、张量索引
tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))print("First row: {}".format(tensor[0]))
print("value of bottom right corner: {}".format(tensor[1, 1]))
print("Last column: {}".format(tensor[:, -1]))
print("First column: {}".format(tensor[..., 0]))
First row: [0. 1.]
value of bottom right corner: 3.0
Last column: [1. 3.]
First column: [0. 2.]
4、张量运算
x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x
output_floordiv = y // x
add: [5. 7. 9.]
sub: [-3. -3. -3.]
mul: [ 4. 10. 18.]
div: [4. 2.5 2. ]
mod: [0. 1. 0.]
floordiv: [4. 2. 2.]