【机器学习】:线性回归模型学习路线

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~
💥💥个人主页:奋斗的小羊
💥💥所属专栏:C语言

🚀本系列文章为个人学习笔记,在这里撰写成文一为巩固知识,二为展示我的学习过程及理解。文笔、排版拙劣,望见谅。


目录

  • 机器学习:线性回归模型学习路线
    • 初识线性回归模型
    • 学习必备数学知识
    • 掌握数据预处理技巧
    • 学习模型训练过程
    • 掌握模型评估指标
    • 1. 初识线性回归模型
    • 2. 学习必备数学知识
    • 3. 掌握数据预处理技巧
    • 4. 学习模型评估指标
    • 5. 深入理解模型训练过程
    • 6. 掌握模型调参技巧

机器学习:线性回归模型学习路线

初识线性回归模型

线性回归模型是一种用于建立自变量与因变量之间线性关系的模型。例如,在房价预测问题中,我们可以使用线性回归模型来预测房屋价格与房屋面积之间的关系。

import numpy as np
from sklearn.linear_model import LinearRegression# 创建示例数据
X = np.array([[1], [2], [3], [4]])
y = np.array([2, 4, 6, 8])# 构建线性回归模型
model = LinearRegression()
model.fit(X, y)# 预测房屋价格
new_X = np.array([[5]])
predicted_price = model.predict(new_X)
print("预测房屋价格:", predicted_price)

学习必备数学知识

在学习线性回归模型时,深入理解相关数学知识非常重要。例如,我们需要了解线性代数中的矩阵运算,微积分中的梯度下降算法等。

import numpy as np# 矩阵乘法示例
A = np.array([[1, 2], [3, 4]])
B = np.array([[5], [6]])
result = np.dot(A, B)
print("矩阵相乘结果:", result)

掌握数据预处理技巧

在实际应用中,数据预处理是机器学习的重要一步。例如,在预测学生考试成绩问题中,我们需要对数据进行缺失值处理和特征缩放等预处理操作。

import pandas as pd
from sklearn.preprocessing import StandardScaler# 读取数据
data = pd.read_csv("student_scores.csv")# 处理缺失值
data.fillna(data.mean(), inplace=True)# 特征缩放
scaler = StandardScaler()
data['score'] = scaler.fit_transform(data['score'].values.reshape(-1, 1))

学习模型训练过程

了解线性回归模型的训练过程对于深入理解模型至关重要。我们可以通过简单的例子来展示模型参数的更新过程。

import numpy as np# 示例数据
X_train = np.array([[1], [2], [3]])
y_train = np.array([2, 4, 6])# 初始参数
w = 0
b = 0
lr = 0.01# 模型训练过程
for i in range(100):y_pred = w * X_train + berror = y_pred - y_trainw -= lr * np.mean(error * X_train)b -= lr * np.mean(error)print("训练后的参数 w 和 b 分别为:", w, b)

掌握模型评估指标

评估模型性能是优化模型的关键步骤。例如,在线性回归模型中,我们可以使用均方误差(MSE)来评估模型的预测效果。

from sklearn.metrics import mean_squared_error# 计算均方误差
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mse = mean_squared_error(y_true, y_pred)
print("均方误差:", mse)

通过以上例子,我们可以深入学习线性回归模型的原理、应用和优化方法。希# 机器学习:线性回归模型学习路线

在机器学习领域,线性回归模型是一种用于建模自变量与因变量之间线性关系的常见模型。通过线性回归,我们可以预测连续型的因变量,例如房价、销售额等。接下来将详细介绍学习线性回归模型的路线,并结合实际例子进行解释。

1. 初识线性回归模型

线性回归模型的基本原理是利用自变量的线性组合来预测因变量。例如,考虑以下简单的线性回归方程:

y = m x + b y = mx + b y=mx+b

其中, y y y 是因变量, x x x 是自变量, m m m 是斜率, b b b 是截距。

例子: 假设我们有一组房屋的面积和价格数据,我们可以使用线性回归模型来预测房屋价格与面积之间的关系。

2. 学习必备数学知识

在理解线性回归模型时,我们需要掌握一些基础的数学知识,如线性代数和微积分。线性代数可以帮助我们理解特征之间的关系,微积分则有助于优化模型参数。

例子: 在线性代数中,我们可以使用矩阵运算来表示线性回归模型中的参数估计过程。例如,最小二乘法可以用矩阵形式表示为 β = ( X T X ) − 1 X T y β = (X^TX)^{-1}X^Ty β=(XTX)1XTy

3. 掌握数据预处理技巧

在应用线性回归模型之前,我们需要对数据进行预处理,以确保数据的质量和可靠性。

例子: 数据清洗阶段,我们可以处理异常值,填补缺失值等。例如,在房价预测中,我们可能需要处理一些缺失的房屋信息。

4. 学习模型评估指标

了解模型评估指标有助于评价模型的性能和准确性。

例子: 对于线性回归模型,我们可以使用均方误差(Mean Squared Error,MSE)来评估模型的预测效果。例如,MSE 越小,说明模型拟合得越好。

5. 深入理解模型训练过程

学习模型训练过程是提高模型性能的关键一步,需要了解梯度下降等优化算法。

例子: 在梯度下降算法中,我们根据损失函数的梯度更新模型参数,直到收敛于最优解。这可以帮助我们找到最优的模型参数来拟合数据。

6. 掌握模型调参技巧

调参是优化模型性能的重要一环,包括选择合适的正则化项、调整学习率等。

例子: 在正则化中,我们可以通过调整正则化参数来控制模型的复杂度,避免过拟合。

通过以上学习路线,结合大量实际例子,我们可以全面掌握线性回归模型的原理、应用和优化方法,从而在实际问题中灵活运用机器学习技术。希望以上内容对你学习线性回归模型有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/30419.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

教你python自动识别图文验证码的解决方案!

验证码识别解决方案 对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的&#xff0…

成都爱尔李晓峰主任讲解眼角多出一层“膜”是什么?怎么治

眼角边突然发现长出来一层皮一层膜一样的东西,肉色挡在眼白上呈三角形,这到底是什么? 一种常见眼科疾病“翼状胬肉”,因其形状像昆虫的翅膀而得名的,它是受外界剌激而引起的一种慢性炎症性病变。 覆盖在眼睛表面的那…

JUC并发编程第十三章——读写锁、邮戳锁

本章路线总纲 无锁——>独占锁——>读写锁——>邮戳锁 1 关于锁的面试题 你知道Java里面有那些锁你说说你用过的锁,锁饥饿问题是什么?有没有比读写锁更快的锁StampedLock知道吗?(邮戳锁/票据锁)ReentrantR…

使用自定义注解进行权限校验

一,前言 对于一些重复性的操作我们可以用提取为util的方式进行处理,但也可以更简便一些,比如自定义个注解进行。选择看这篇文章的小伙伴想必都对注解不陌生,但是可能对它的工作原理不太清楚。这里我们用注解实现对接口的权限校验…

Wireshark v4 修改版安装教程(免费开源的网络嗅探抓包工具)

前言 Wireshark(前称Ethereal)是一款免费开源的网络嗅探抓包工具,世界上最流行的网络协议分析器!网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark网络抓包工具使用WinPCAP作为…

基于GWO-CNN-LSTM数据时间序列预测(多输入单输出)-多维时间序列模型-MATLAB实现

基于GWO-CNN-LSTM数据时间序列预测(多输入单输出)-多维时间序列模型-MATLAB实现 基于灰狼优化(Grey Wolf Optimizer, GWO)、卷积神经网络(Convolutional Neural Network, CNN)和长短期记忆网络(Long Short-Term Memor…

【计算机视觉(11)】

基于Python的OpenCV基础入门——图像梯度变换 图像梯度变换Sobel算子Scharr算子Laplacian算子 图像梯度变换的代码实现以及效果图 图像梯度变换 图像梯度变换可以用于边缘检测、特征提取、增强图像和压缩图像等多种任务。图图像梯度可以把图像看成二维离散函数,图像…

什么是进程?

目录 进程 进程的特征, 概念 我们下面先简单介绍一下什么是进程 接下来看看一个程序的运行过程 进程的组成 进程的状态和转换 进程的状态 进程状态的转换 ​编辑 进程的组织方式 进程控制 如何实现进程控制 为什么进程控制的过程需要一气呵成? 进程控制的实现…

前端初学java

目录 java术语 JDK Javac Java Jdb Jhat JVM JRE JAR JDK下载 运行java文件 字面量 隐式转换 强制转换 注意 运算符 &&、||、&、| Switch 程序入口 String[] args 数组 静态初始化 动态初始化 变量初始化 Java内存 方法 重载 Final 包 …

智警杯数据库学习(1)

CentOS中安装MySQL数据库 检测系统是否自带安装 MySQL 首先检查是否自带mysql rpm -qa | grep mysql 如果有删除 rpm -e mysq 未安装,开始安装 进入software目录,解压安装包mysql5.7.25 cd /root/software tar -xvf mysql-5.7.25-1.el7.x86_64.rp…

【决战欧洲杯巅峰】欧洲杯含金量比世界杯高吗?有走地数据分析软件吗?

关于欧洲杯和世界杯的含金量对比,这是一个相当主观的问题,因为两者的价值和重要性很大程度上取决于个人的喜好和观点。但我可以从一些关键方面来为你提供比较的视角。 首先,从参赛队伍和竞技水平来看,世界杯无疑是全球范围内最具…

[渗透测试学习] SolarLab-HackTheBox

SolarLab-HackTheBox 信息搜集 nmap扫描端口 nmap -sV -v 10.10.11.16扫描结果如下 PORT STATE SERVICE VERSION 80/tcp open http nginx 1.24.0 135/tcp open msrpc Microsoft Windows RPC 139/tcp open netbios-ssn Microsoft Windows n…

C/S、B/S架构(详解)

一、CS、BS架构定义 CS架构(Client-Server Architecture)是一种分布式计算模型,其中客户端和服务器之间通过网络进行通信。在这种架构中,客户端负责向服务器发送请求,并接收服务器返回的响应。服务器则负责处理客户端的…

浅谈RC4

一、什么叫RC4?优点和缺点 RC4是对称密码(加密解密使用同一个密钥)算法中的流密码(一个字节一个字节的进行加密)加密算法。 优点:简单、灵活、作用范围广,速度快 缺点:安全性能较差&…

Pytorch编写Transformer

本文参考自https://github.com/datawhalechina/learn-nlp-with-transformers/blob/main/docs/ 在学习了图解Transformer以后,需要用Pytorch编写Transformer,下面是写代码的过程中的总结,结构根据图解Transformer进行说明。 import numpy as …

前字节员工自爆:我原腾讯一哥们,跳槽去小公司做小领导,就签了竞业,又从小公司离职去了对手公司,结果被发现了,小公司要他赔80万

“世界那么大,我想去看看”,这句曾经火遍网络的辞职宣言,说出了多少职场人心中的渴望。然而,当我们真的迈出跳槽那一步时,才发现,现实远比想象中残酷得多。 最近,一起前字节跳动员工爆料的事件…

年终奖发放没几天,提离职领导指责我不厚道,我该怎么办?

“年终奖都发了,你还跳槽?太不厚道了吧!” “拿完年终奖就走人,这不是典型的‘骑驴找马’吗?” 每到岁末年初,关于“拿到年终奖后是否应该立即辞职”的话题总会引发热议。支持者认为,这是个人…

如何验证Rust中的字符串变量在超出作用域时自动释放内存?

讲动人的故事,写懂人的代码 在公司内部的Rust培训课上,讲师贾克强比较了 Rust、Java 和 C++ 三种编程语言在变量越过作用域时自动释放堆内存的不同特性。 Rust 通过所有权系统和借用检查,实现了内存安全和自动管理,从而避免了大部分内存泄漏。Rust 自动管理标准库中数据类…

PID控制算法学习笔记分享

目录 一、参数设定 二、PID计算公式 三、位置式PID代码实现 四、增量式PID代码实现 五、两种控制算法的优缺点 六、PID算法的改进 一、参数设定 比例系数(kp):P项的作用是根据当前误差的大小来产生一个控制量。它直接与误差成正比&#…

【机器学习300问】126、词嵌入(Word Embedding)是什么意思?

人类的文字,作为一种高度抽象化的符号系统,承载着丰富而复杂的信息。为了让电脑也能像人类一样理解并处理这些文字,科学家们不断探索各种方法,以期将人类的语言转化为计算机能够理解的格式。 一、One-Hot编码的不足 在自然语言处…