Mamaba3--RNN、状态方程、勒让德多项式

Mamaba3–RNN、状态方程、勒让德多项式

一、简单回顾

在Mamba1和Mamba2中分别介绍了RNN和状态方程。
下面从两个图和两个公式出发,对RNN和状态方程做简单的回顾:
R N N : s t = W s t − 1 + U x t ; O t = V s t RNN: s_t = Ws_{t-1}+Ux_t;O_t = Vs_t RNN:st=Wst1+UxtOt=Vst
状态方程: x t ^ = A x t − 1 + B u t ; y = C x t 状态方程:\hat{x_t}=Ax_{t-1}+Bu_t;y=Cx_t 状态方程:xt^=Axt1+Buty=Cxt
在这里插入图片描述
在这里插入图片描述
可以看到RNN的本质表达是一个状态方程。
再重复一遍状态变量、状态方程和输出方程的定义,加深理解:
状态变量:刻画系统状态的变量称为状态变量(比如机械系统中的速度、位置)。
状态方程:描述系统输入如何影响状态变量变化的方程。
输出方程:描述状态变量与输出变量关系的一组代数方程。

二、勒让德多项式

勒让德多项式可以被理解为一组多项式基函数,和傅里叶级数类似,允许将某个未知信号分解为不同多项式函数的组合。
在这里插入图片描述
在这里插入图片描述

三、记忆的本质

记忆是通过重新复盘过去发生的事情,且记忆的内容 f ^ ( t ) \hat{f}(t) f^(t) ≠ 事件本身 f ( t ) f(t) f(t) 。而是拟合逼近的关系.
在这里插入图片描述

对于一段序列信号,可以被一组基函数(S4中为勒让德多项式) e i ( t ) e_i(t) ei(t)进行线性组合来表示。即:
f ^ ( t ) = ∑ i = 1 ∞ c i e i ( t ) \hat{f}(t)=\sum_{i=1}^{\infty}c_ie_i(t) f^(t)=i=1ciei(t)
在这里插入图片描述
在真实场景中,信号是持续输入的,因此,拟合和逼近也是在持续进行。
在这里插入图片描述
其中 f < t f_{<t} f<t表示目标函数f在t时刻之前的逼近。即不同时刻对应着不同的拟合系数
t 1 时刻: f ^ < t 1 ( t ) = ∑ i = 1 N c t 1 , i e i ( t ) t 4 时刻: f ^ < t 4 ( t ) = ∑ i = 1 N c t 4 , i e i ( t ) t_1时刻:\hat{f}_{<t_1}(t)=\sum_{i=1}^Nc_{t_1,i}e_i(t) \\ t_4时刻:\hat{f}_{<t_4}(t)=\sum_{i=1}^Nc_{t_4,i}e_i(t) t1时刻:f^<t1(t)=i=1Nct1,iei(t)t4时刻:f^<t4(t)=i=1Nct4,iei(t)
在上式中,勒让德多项式 e i ( t ) e_i(t) ei(t)是固定的, c i c_i ci表示多项式基函数的系数,且随着输入 f ( t ) f(t) f(t)不断更新。 介绍到这里,脑子里有一个想法,前面介绍的状态变量也是随着输入不断的更新!
使用N阶勒让德多项式逼近序列信号,即意味着将信号映射至N维空间中,而 c ( t ) c(t) c(t)是刻画信号的状态变量。

接下来计算 c ( t ) c(t) c(t)
在这里插入图片描述
对上面的公式进行微分,并经过数学推理可以得到一个ODE:
在这里插入图片描述
对上式进行整理可得:
d d t c ( t ) = 1 t A c ( t ) + 1 t B f ( t ) − > c ˙ ( t ) = A c ( t ) + B f ( t ) \frac{d}{dt}c(t)=\frac{1}{t}Ac(t)+\frac{1}{t}Bf(t)->\dot{c}(t)=Ac(t)+Bf(t) dtdc(t)=t1Ac(t)+t1Bf(t)>c˙(t)=Ac(t)+Bf(t)
其中,矩阵A(Hippo矩阵)为:在这里插入图片描述

四、总结

本文说明了RNN、SSM与勒让德多项式之间的关系:

  • RNN本质上是一个SSM
  • S4将序列信号映射至勒让德基函数空间,状态向量即为多项式系数
  • S4中将RNN中权重矩阵W替换成Hippo矩阵

额外说明

(PS:Mamba所采用的基本框架仍是S4, Mamba则在S4的基础上引入了若干关键改进,主要可以总结为以下几点:
选择性扫描算法(Selective Scan Algorithm):Mamba采用了一种硬件感知的并行化算法,称为选择性扫描算法,它能够在加速训练和推理速度的同时,保持对历史上下文的有效利用。与S4相比,Mamba不仅存储整个历史上下文,而且选择性地将部分历史上下文总结为固定上下文,这样既保留了详细的历史信息,又提高了处理效率。
参数化矩阵与Attention效果:Mamba模型通过参数化矩阵对输入信息进行有选择性的处理,类似于注意力机制(Attention),不同输入拥有不同的状态表示,增强了模型对不同token信息的处理能力。
简化的SSM模型:Mamba还可能包含了对SSM(Sparse State Machines或Structured State Machines)的简化,进一步提升了模型的效率和可解释性。)

五、参考文章

[1]一文通透想颠覆Transformer的Mamba:从SSM、HiPPO、S4到Mamba
[2]现代控制理论——状态、状态空间、状态空间描述
[3]Mamba:4 魔幻矩阵A
[4]Mamba:3 记忆殿堂

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/30265.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

shadertoy-安装和使用

一、安装vscode 安装vscode流程 二、安装插件 1.安装glsl编辑插件 2.安装shader toy插件 三、创建glsl文件 test.glsl文件 float Grid(float size, vec2 fragCoord) {vec2 r fragCoord / size;vec2 grid abs(fract(r - 0.5) - 0.5) / fwidth(r);float line min(grid…

Linux内核开发-编译内核源码

前言 大部分公司的所谓的Linux内核工程师主要工作是基于社区开源内核进行定制化修改&#xff0c;基本不会有机会向上游提供patch&#xff0c;仅限于公司内部业务的修修补补。 作为内核开发工程师两年多&#xff0c;精力一直被公司业务消耗&#xff0c;所有的内核知识都来自于…

异构集成封装类型2D、2.1D、2.3D、2.5D和3D封装技术

异构集成封装类型&#xff1a;2D、2.1D、2.3D、2.5D和3D封装详解 简介随着摩尔定律的放缓&#xff0c;半导体行业越来越多地采用芯片设计和异构集成封装来继续推动性能的提高。这种方法是将大型硅芯片分割成多个较小的芯片&#xff0c;分别进行设计、制造和优化&#xff0c;然后…

【深度学习驱动流体力学】计算流体力学openfoam-paraview与python3交互

目的1:配置 ParaView 中的 Python Shell 和 Python 交互环境 ParaView 提供了强大的 Python 接口,允许用户通过 Python 脚本来控制和操作其可视化功能。在 ParaView 中,可以通过 View > Python Shell 菜单打开 Python Shell 窗口,用于执行 Python 代码。要确保正确配置 …

[Linux] vi编辑器

命令模式&文本模式 命令模式就输入命令然后执行&#xff0c;文本模式就是系统把你的输入都当成写进文件里的字符 切换模式&#xff1a; 刚进入默认是命令模式&#xff0c;按: i I a A o O 进入文本模式&#xff0c; 通过他们进入文本模式有什么不同&#xff1f; 然后按esc进…

python 版本切换,更换当前默认版本

电脑可以安装多个版本&#xff0c;但是好像没有正规的维护python版本的工具&#xff0c;比如前端就有nvm切换node版本&#xff0c;但是python我没找到比较好的&#xff08;有大佬知道路过方便留言一下&#xff0c;跪谢。。&#xff09; 废话不多说&#xff0c;更改默认版本很简…

DIVE INTO DEEP LEARNING 36-49

文章目录 36. Data augmentation36.1 Training with enhanced data36.2 Enhancement measures36.3 Data augmentation summary 37. Fine tuning37.1 Fine tuning Introduce37.2 Fine tuning Step37.3 Fine tuning summary 38. Object detection38.1 Object detection38.2 Edge …

[Linux] Shell

chsh不是一种sh,而是一个命令行使用程序&#xff0c;用于更改默认shell CentOS是个开源软件&#xff0c;没有sh,sh是商业版的&#xff0c; 按ls /bin/*sh显示的sh实际上是个链接文件&#xff0c;连接的bash 在命令行输入新的sh名&#xff0c;会启动一个新的进程&#xff0c; 输…

厂里资讯之app端文章搜索

app端文章搜索 1) 内容介绍 文章搜索 ElasticSearch环境搭建 索引库创建 文章搜索多条件复合查询 索引数据同步 搜索历史记录 Mongodb环境搭建 异步保存搜索历史 查看搜索历史列表 删除搜索历史 联想词查询 联想词的来源 联想词功能实现 2) 搭建ElasticSearch环境 …

MyBatis系列七: 一级缓存,二级缓存,EnCache缓存

缓存-提高检索效率的利器 官方文档 一级缓存基本介绍快速入门Debug一级缓存执行流程一级缓存失效分析 二级缓存基本介绍快速入门Debug二级缓存执行流程注意事项和使用细节 mybatis的一级缓存和二级缓存执行顺序小实验细节说明 EnCache缓存基本介绍配置和使用EhCache细节说明 My…

SpringBoot整合Minio(支持公有及私有bucket)

&#x1f60a; 作者&#xff1a; 一恍过去 &#x1f496; 主页&#xff1a; https://blog.csdn.net/zhuocailing3390 &#x1f38a; 社区&#xff1a; Java技术栈交流 &#x1f389; 主题&#xff1a; SpringBoot整合Minio(支持公有及私有bucket) ⏱️ 创作时间&#xff1…

张大哥笔记:如何选择一个人就值得做的副业

很多人喜欢把上班称为主业&#xff0c;把上班之外的工作称为副业&#xff0c;不管以哪种方式称呼都可以&#xff0c;只要能赚钱就行&#xff0c;上班的本质就是出卖时间&#xff0c;不管你是月入5000还是月入2万&#xff0c;都是给老板打工&#xff01; 但搞笑的就是月入2万的人…

关于app爬虫的环境准备

摘要 有些数据需要在手机应用中才能查看&#xff0c;没有网页版&#xff0c;所以学习移动端的爬虫是有必要的。 手机系统分为安卓和苹果两大系统&#xff0c;本次讲解主要以安卓手机为例 有安卓手机的可以使用手机&#xff0c;没有的可以使用模拟器&#xff0c;本次以夜神模…

基于C++、MFC和Windows套接字实现的简单聊天室程序开发

一、一个简单的聊天室程序 该程序由服务器端和客户端两个项目组成&#xff0c;这两个项目均基于对话框的程序。服务器端项目负责管理客户端的上线、离线状态&#xff0c;以及转发客户端发送的信息。客户端项目则负责向服务器发送信息&#xff0c;并接收来自服务器的信息&#…

[机器学习算法]决策树

1. 理解决策树的基本概念 决策树是一种监督学习算法&#xff0c;可以用于分类和回归任务。决策树通过一系列规则将数据划分为不同的类别或值。树的每个节点表示一个特征&#xff0c;节点之间的分支表示特征的可能取值&#xff0c;叶节点表示分类或回归结果。 2. 决策树的构建…

《STM32 HAL库》小米微电机控制例程——通信协议分析及驱动库

之前有段时间因为机器狗项目的缘故&#xff0c;一直在使用小米微电机&#xff0c;但是苦于没有一个详尽的奶妈级教程&#xff0c;在控制电机的学习中踩了不少的坑。今天咱们就从头至尾一步一步的实现使用按键控制小米微电机。本文将会分析小米电机驱动库&#xff0c;并简要介绍…

练手代码之使用Python实现合并PDF文件

如果你有合并PDF的需要&#xff0c;你会怎么办 我们无所不能的程序员会选择写一个Python代码来实现&#xff08;谁会这么无聊&#xff1f;是我&#xff09;&#xff0c;如果真的有PDF操作需要&#xff0c;我推荐你使用PDF Expert这个软件哈~ 话不多说直接上代码&#xff1a; …

Linux操作系统学习:day05

内容来自&#xff1a;Linux介绍 视频推荐&#xff1a;[Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试]( 目录 day0530、删除用户31、添加和删除用户组创建用户组删除用户组 32、修改密码33、使用tar工具进行压缩和解压缩压缩解压缩 34、使用zip u…

增强大型语言模型(LLM)可访问性:深入探究在单块AMD GPU上通过QLoRA微调Llama 2的过程

Enhancing LLM Accessibility: A Deep Dive into QLoRA Through Fine-tuning Llama 2 on a single AMD GPU — ROCm Blogs 基于之前的博客《使用LoRA微调Llama 2》的内容&#xff0c;我们深入研究了一种称为量化低秩调整&#xff08;QLoRA&#xff09;的参数高效微调&#xff0…

单片机第五季-第八课:STM32CubeMx和FreeRTOS

1&#xff0c;FreeRTOS背景介绍 RTOS简介&#xff1a; 实时操作系统&#xff0c;本用于追求实时性的嵌入式系统&#xff0c;典型&#xff1a;ucos/uclinux/vxworks&#xff1b; 特点&#xff1a;中断响应快、一般可嵌套中断、使用实地址、多任务&#xff1b; &#xff08;实…