【猫狗分类】Pytorch VGG16 实现猫狗分类1-数据清洗+制作标签文件

Pytorch 猫狗分类

用Pytorch框架,实现分类问题,好像是学习了一些基础知识后的一个小项目阶段,通过这个分类问题,可以知道整个pytorch的工作流程是什么,会了一个分类,那就可以解决其他的分类问题,当然了,其实最重要的还是,了解她的核心是怎么工作的。

那首先,我们的第一个项目,就做猫狗的分类。

声明:整个数据和代码来自于b站,链接:使用pytorch框架手把手教你利用VGG16网络编写猫狗分类程序_哔哩哔哩_bilibili

我做了复现,并且记录了自己在做这个项目分类时候,一些所思所得。

目前,我需要掌握pytorch针对于分类问题,解决整个分类问题的工作流程是怎么样的,其他的进阶,需要自己去不断的练习和体会。因为,分类问题也是,计算机视觉想要解决的一个重要问题,而且,对于yolo系列,直接解决了分类问题,所以,现在理解好基础的,以后就能更好的理解大佬们的框架,才知道怎么去优化网络。

前面说到,通过softmax函数,把分类问题,转换成了概率问题,把给你一个图片,神经网络回答我是什么的问题,转变成了,给你一个图片,神经网络输出,是什么类别的概率是什么的问题。而神经网络的整个训练过程,也是w在不断被训练的一个动态过程,最后,我们会训练出一个较好的w,输入图片,神经网络就能告诉我们是什么类别了。

那现在,就从数据开始吧。

数据清洗

拿到数据,首先要分析数据集是什么样子的,包括,数据集包含了什么图片,每张图片的命名时怎么样的?

现在,我们有很多猫和狗的照片,存放在train文件夹下面,猫照片,狗照片,分别存在cat和长这样:

再点开dog文件夹:

首先,要根据这两类照片,去生成一个标签文件,具体步骤是这样:

先遍历这两个数据集,遍历的意思是,相当于你打开照片的文件夹,把照片,一张一张的拿出来,然后把每个照片归好类,比如,第二个dog文件夹里面,你拿出第一张,标记是狗,记录下来类别和这张狗照片的路径位置,记录在一个txt文档里面,这就是,到时候训练的时候,提供给trian的一个label文件,这个label文件,告诉网络,我现在给你一张照片,记住,他是一只狗,你来训练吧。就按照这个逻辑,把很多张狗的照片,猫的照片,都喂给网络,让他训练,说到训练,训练的其实是w,就是权重,把权重w训练好了,我们希望到时候,给他随便一个猫或者狗的照片,网络能告诉我,这是一只狗还是一只猫。

那现在,就开始,准备标签文件。

刚说到,想象一下,我们从某个文件夹拿出来一张一张的照片,那就用getcwd函数,获取当前的工作目录。

1、导入包

Import os

from os import getcwd

【拓展:获取当前工作目录】  

import os

current_directory = os.getcwd()

print("当前工作目录是:", current_directory)

2、指定照片的类别

classes=['cat','dog']#所有类别,放进列表,这个好处是可以修改,往里面添加或者删除就好了

3、定义数据集划分的方式

sets = ['train']  #这里是表示只有训练集

表示当前的这个脚本,是我们用来处理训练集的,模型通过学习训练集中的特征和标签,去构建预测模型;这样的写法,是便于添加的列表形式,如果项目还需要val和test集,那就直接在sets里面添加这些划分,比如:sets = ['train','val','test']

4、写标签文件(重点来了)

4.1先做一个空的txt文本文件,用来存放等下制作的标签文件。
  • 取出这个训练集,对于sets里面的每一个数据集(这里是只有train):for se in sets
  • 打开或创建标签文件list_file:

list_file = open('cls_'+se+'.txt'),创建或清空一个名为cls_train.txt的文件(如果se是'train')用于写入图像信息。'w' 是文件打开模式,表示写入,接下来的操作中,会通过,list_file.write()方法往这个文件里写入数据

4.2 空文件做好了,接下来放标签信息,内容是【某张图片类别+这个图片的储存位置】
4.2.1获取图片数据集储存位置
  • 获取数据集路径,用os.join拼接起来:

         wd = getcwd() #当前工作路径

         datasets_path = os.path.join(wd,se)  # 拼接,路径+train,意思数据集在trian文件夹这里面

最后指向的是train文件夹:

  • 列出数据集根目录下的子目录(类别)

   types_name = os.listdir(datasets_path)# 返回是['cat','dog']

        【拓展】os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。这里会返回,cat和dog这两个。

4.2.2 遍历最开始定义的数据集类别clsaaes取出索引作为图片数据集的类别
  • 遍历类别:对于每个type_name,检查它是否属于classes列表,classes是我们最开始定义的类别列表,包括,cat和dog如果不在,就跳过这个类别,否则,就继续,意思是,如果类别是猫或狗,就继续执行下面的代码,如果类别不是猫或者狗,就跳过不管了:

for type_name in types_name:

    if type_name not in classes:

        continue

  • 记录类别ID:如果type_nameclasses列表中,获取其索引(即类别ID):

    cls_id=classes.index(type_name)#输出0-1

【拓展】.index() 函数用于从列表中找出指定元素的第一个出现位置,并返回其索引。如果元素不存在于列表中,该方法会抛出一个 ValueError 异常。

classes.index(type_name)的意思是,从classes这个猫狗类别的列表中,根据,type_name在classes的索引位置,返回索引位置。

classes['cat','dog'],type_name会返回,0,1

4.2.3 遍历不同类别图片文件夹下的每一张图片,检查格式是不是满足jpg等
  • 构建图片目录路径:photos_path=os.path.join(datasets_path,type_name),这里直接定位到存猫和狗的照片位置,就是工作路径下的train下的cat和dog文件夹
  • 列出类别目录下的图片文件:photos_name = os.listdir(photos_path)

【拓展】:os.listdir(path) 函数接收一个路径参数 path,这个路径可以是目录的绝对路径或相对路径。它的作用是返回指定目录下的所有文件和目录名(不包括子目录中的文件)组成的列表。列表中的每个元素都是一个字符串,代表了目录下的一个项(文件或子目录)的名称。

在这里,photos_path是两个照片的文件夹,这里是把所有照片的名字都取出来了,返回的形式是一个列表。

  • 对每张照片的名字,进行检查,遍历图片文件:对于每个图片文件,检查其扩展名是否为.jpg, .png, 或 .jpeg。就算不是,也继续

for photo_name in photos_name:

    _,postfix = os.path.splitext(photo_name) # os.path.splitext是用来分割文件名字和拓展名字的

        if postfix not in ['.jpg','.png','.jpeg']:

              continue

【拓展】os.path.splitext(path)是一个内置函数,它接受一个文件路径或文件名作为参数,并返回一个包含两个元素的元组:第一个元素是文件的基本名(不包括扩展名),第二个元素是文件的扩展名(包括前面的点);比如 返回('image', '.jpg'),如果 photo_name 是 'image.jpg'

使用解包赋值(_, postfix = ...)时,下划线 _ 是一个常用的占位符,表示我们不关心元组的第一个元素(基本文件名),只想保留第二个元素(扩展名)。因此,postfix 变量将存储文件的扩展名,如 .jpg.png 或 .jpeg.

注意!!!这个逻辑有个混淆的地方:

if postfix not in ['.jpg','.png','.jpeg']:

              continue

这段条件语句的目的是排除那些非.jpg, .png, .jpeg格式的文件。具体解释如下:

  • postfix(即文件扩展名)不是.jpg.png, 或 .jpeg之一时,postfix not in ['.jpg','.png','.jpeg']这个条件为True
  • 当这个条件为真时,执行continue语句,这意味着当前循环的剩余部分将被跳过,直接开始检查下一个文件。条件为真,意思是,我检查到的这一张照片的拓展名,不在这三个里面,所以,,针对于这一张,照片,我选择,continue,也就是说,我不管了,我继续执行下一张照片。如果下一张照片的拓展名,是属于这三个格式,那我就,进行进一步的图片操作。
  • 因此,只有当文件扩展名确实.jpg.png, 或 .jpeg时,代码才会继续执行后续对这些图像文件的操作,比如将其路径写入到输出文件中。

所以,正确的理解是,这段代码是用来确保仅处理.jpg, .png, .jpeg这三种图片格式的文件,而忽略所有其他格式的文件。

4.2.4 把要的图片的类别和每张图片的路径写进label文本文件里
  • 那么,对于是刚刚说的符合三个格式的照片,我们收集起来,写入到最开始,打开的那个list_file的文件里面去:

list_file.write(str(cls_id)+';'+'%s/%s'%(wd, os.path.join(photos_path,photo_name)))

list_file.write('\n')

  1. 构造字符串str(cls_id)+';'+'%s/%s'%(wd, os.path.join(photos_path,photo_name)) 这部分代码构造了一条记录,内容包括:

    • cls_id:这是图像所属类别的ID,转换为字符串形式。假设cls_id为0或1(对应于'cat'或'dog')。
    • ';':分隔符,用于在类别ID与文件路径之间提供清晰的分隔。
    • '%s/%s'%(wd, os.path.join(photos_path,photo_name)):这部分构造了图像的完整路径。%s是字符串格式化占位符,第一个%s会被wd(当前工作目录)替换,第二个%s会被os.path.join(photos_path,photo_name)的结果替换。os.path.join(photos_path,photo_name)确保了路径拼接的跨平台兼容性,生成从当前工作目录到目标图片的完整相对路径。
  2. 写入文件list_file.write(...) 将上述构造的字符串写入到list_file所指向的文件中。这样,每张图片的信息(类别ID和相对路径)就会以文本形式存储在文件里,每条记录之间通过分号分隔,每条记录末尾通过list_file.write('\n')添加换行符,以便于之后读取时能清晰地区分每一条记录。

  • 最后,list_file.close()

注意:原来的博主,用的是gbk编码,这样生成的label文件在我这是乱码,其实一般用utf-8会好,所以,需要写一个程序,把编码格式改成utf-8:

# 转换脚本

# 转换脚本
def convert_gbk_to_utf8(input_file, output_file):with open(input_file, 'r', encoding='gbk') as f:content = f.read()with open(output_file, 'w', encoding='utf-8') as f:f.write(content)# 调用函数进行转换
input_file = 'cls_train.txt'  # 这里填写你的GBK编码文件名
output_file = 'cls_train_1.txt'  # 输出的UTF-8编码文件名
convert_gbk_to_utf8(input_file, output_file)

总结

到这里,就针对于我们的猫狗数据集,完成了,数据的清洗以及标签文件的制作。所以,对于其他的数据集,步骤也是大差不差的。

现在来,总结一下:

1、拿到数据做什么?

  • 数据清洗+标签文件制作(两个步骤相辅相成)

首先,拿到数据集,我们要做两件事,数据清洗和制作标签文件,在这个项目里面,照片都是很干净的数据,不存在格式乱七八糟或者其他的情况,所以,清洗就是简单的判断是不是jpg等格式,还是很简单的。

另外就是,标签文件夹的制作。这里学到的一点是,我们可以先分析图片的存放形式,然后,通过索引的方式,遍历,train文件夹下的不同类别的子目录,完成自动生成好几个类别的作用。

2、分类标签文件存什么?

  • 标签文件信息:类别+图片路径

映射文件:当图片和标签不是通过文件结构直接关联时,会使用一个映射文件来记录这种对应关系。这个映射文件(如CSV)通常包含至少两列,一列是图片的路径或文件名,另一列是对应的类别标签。例如:

1image_path,label
2data/cats/cat_001.jpg,0
3data/dogs/dog_002.png,1

在这个映射文件中,第一列是图片的完整路径或相对于某个根目录的路径,第二列是类别标签,0代表猫,1代表狗。

在使用深度学习框架(如PyTorch)进行训练时,可以通过自定义的数据加载器(DataLoader)读取这种映射文件,根据映射关系动态地加载图像和对应的标签,从而实现图片与其类别信息的正确配对。

3、拓展到其他的数据处理过程

  • 图片名字是各有不同的,有的很复杂,各种标点符号什么的,会涉及更复杂的处理。所以要学会观察图片名字,然后做出分割。
  • 分类问题的标签还是很简单的,就是把图片文件路径读取,然后拆开,根据循环,一张一张图片的取出来解析,是什么类型,然后配上每张图片的路径。

完整代码

import os
from os import getcwdclasses=['cat','dog']
sets=['train']if __name__=='__main__':wd=getcwd()for se in sets:list_file=open('cls_'+ se +'.txt','w')datasets_path=setypes_name=os.listdir(datasets_path)#os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表for type_name in types_name:if type_name not in classes:continuecls_id=classes.index(type_name)#输出0-1photos_path=os.path.join(datasets_path,type_name)photos_name=os.listdir(photos_path)for photo_name in photos_name:_,postfix=os.path.splitext(photo_name)#该函数用于分离文件名与拓展名if postfix not in['.jpg','.png','.jpeg']:continuelist_file.write(str(cls_id)+';'+'%s/%s'%(wd, os.path.join(photos_path,photo_name)))list_file.write('\n')list_file.close()

【为什么每个图片能精准匹配到他的类别?】实际上是因为用了两个循环,第一个大循环(for type_name in types_name),让你进入到cat文件夹,然后,第二个小循环(for photo_name in types_name),遍历,cat文件夹下面的每一张图片, 直到cat里面每一张图片都遍历完,在跳入dog文件夹的大循环,然后,遍历,dog文件夹下面的每一个狗的图片。

所以,数据集组织结构要清晰,每个类别下的图片需放在对应类别名称的文件夹中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/30001.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第6章 设备驱动程序(3)

目录 6.5 块设备操作 6.5.1 块设备的表示 6.5.2 数据结构 6.5.3 向系统添加磁盘和分区 6.5.4 打开块设备文件 本专栏文章将有70篇左右,欢迎关注,查看后续文章。 6.5 块设备操作 特点: 随机访问任意位置。 固定块大小的传输。 块设备在内…

手机网站制作软件是哪些

手机网站制作软件是一种用于设计、开发和创建适用于移动设备的网站的软件工具。随着移动互联网时代的到来,越来越多的用户开始使用手机浏览网页和进行在线交流,因此,手机网站制作软件也逐渐成为了市场上的热门工具。 1. Adobe Dreamweaver&am…

天翼云8080、80端口用不了的问题

天翼云8080、80端口用不了的问题 前言:前段时间天翼云搞了活动,原来公司用的华为云老板说太贵了也快到期了,就换了天翼云的服务器。 排查: 安全组开放 80 8080 防火墙查看 没有问题 nginx nacos dcoker等停了 查看监听端口 发现…

YOLOv10改进 | 注意力篇 | YOLOv10引入HAttention(HAT)注意力

1. HAT介绍 1.1 摘要:基于 Transformer 的方法在低级视觉任务(例如图像超分辨率)中表现出了令人印象深刻的性能。 然而,我们发现这些网络通过归因分析只能利用有限的输入信息空间范围。 这意味着 Transformer 的潜力在现有网络中仍未得到充分发挥。 为了激活更多的输入像素…

国际现货黄金的交易方式:二次入场机会识别

近期受地缘局势以及通胀因素的影响,国际现货黄金投资又重新受到市场的青睐。虽然近期金价出现大跌,但投资者反而认为这是低价买金的好机会。为了方便投资者做出决策,下面我们就介绍一些国际现货黄金的交易方式——二次入场点进场。 在国际现货…

探索高效和轻量级多模态大语言模型的奥秘

过去一年,多模态大语言模型(MLLM)在视觉问答、视觉理解和推理等任务中表现出色。然而,模型的庞大尺寸和训练推理的高成本限制了其在学术界和工业界的广泛应用。因此,研究高效和轻量级的MLLM具有重要意义,尤其是在边缘计算场景中。…

Graphviz——实现动态更新协议状态机

1、描述 为了实现动态更新协议状态机,首先需要定义类来表示协议状态机。初始化该类后,保存状态机对象。在后续更新过程中,就可以加载保存的状态机对象,添加新的状态或事件。Graphviz的安装过程参考:Graphviz——安装、…

ECharts 雷达图案例002 - 诈骗性质分析

ECharts 雷达图案例002 - 诈骗性质分析 📊 ECharts 雷达图案例002 - 诈骗性质分析 深入挖掘数据背后的故事,用可视化手段揭示诈骗行为的模式和趋势。 🔍 案例亮点 创新的数据展示方式,让复杂的诈骗数据一目了然。定制化的雷达图…

一文带你入门【论文排版】利器·LaTeX |Macos

小罗碎碎念 我在刚开始写公众号的时候,写过一期推文,详细的讲解过如何使用LaTeX快速的进行论文排版。不过当时用的是windows的系统,这一次把Mac端的教程补上。 windows系统教程 https://zhuanlan.zhihu.com/p/677481269 LaTeX是一种流行的排…

Python10 python多线程

1.什么是python多线程 Python的多线程指的是在一个Python程序中同时运行多个线程,以达到并发执行多个任务的目的。线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。 在Python中,多线程的…

昇思25天学习打卡营第1天 | 快速入门

内容介绍:通过MindSpore的API来快速实现一个简单的深度学习模型。 具体内容: 1. 导包 import mindspore from mindspore import nn from mindspore.dataset import vision, transforms from mindspore.dataset import MnistDataset 2. 处理数据 fro…

如何快速使用向量检索服务DashVector?

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector 本文将介绍如何快速上手使用向量检索服务DashVector。 前提条件 已创建Cluster:创建Cluster。 已获得API-KEY:API-KEY管理。 已安装最新版SDK&#xff1a…

【网络安全学习】漏洞扫描:-01- 漏洞数据库searchsploit的使用

漏洞数据库是收集和存储各种软件漏洞信息的资源库。 漏洞数据库通常包含漏洞的名称、编号、描述、影响范围、危害等级、解决方案等信息,有些还提供漏洞的分析报告、演示视频、利用代码等内容。 1.常用的在线漏洞库: 国家信息安全漏洞共享平台 https:/…

Unity 天空盒制作使用教程

文章目录 1.概念2.制作天空盒3.使用天空盒3.1 为场景添加3.2 为相机添加 1.概念 天空盒是包裹整个场景的环境效果。 2.制作天空盒 1、创建材质球。 2、设置材质球Shader为SkyBox/6 Sided,将六张贴图放到对应位置。 3.使用天空盒 3.1 为场景添加 方法一、直接…

STM32F103ZET6_移植uC/OS_HAL

1下载源码 网址 GitHub - weston-embedded/uC-OS2: C/OS-II is a preemptive, highly portable, and scalable real-time kernels. Designed for ease of use on a huge number of CPU architectures. 需要下载三个文件 1看你使用是ucos2还是3(第一个文件&#…

【Python】类和对象高级特性

目录 前言 类变量与实例变量 类方法 静态方法 私有属性和方法 多重继承 元类 描述符 总结 前言 在前一篇文章中,我们讨论了 Python 类和对象的基本概念。本文将深入探讨一些高级特性,这些特性可以帮助你更有效地使用 Python 进行面向对象编程。…

Next.js开发中使用useRouter实现点击返回到上一页

在使用Next.js框架做前端页面开发时,如果想返回到上一页,可以利用useRouter钩子提供的back()方法,可以这样做: import {useRouter} from "next/navigation"; import {Space} from "antd"; import {ArrowLeftOutlined} f…

Mendix 创客访谈录|医疗设备领域的数字化转型利器

本期创客 尚衍亮 爱德亚(北京)医疗科技有限公司 应用开发和数字化事业部开发经理 大家好,我叫尚衍亮。毕业于软件工程专业,有6年的软件开发经验。从2021年开始,我在爱德亚(北京)医疗科技有限公司…

智能合约开发的过程

智能合约是一种运行在区块链上的程序,可以自动执行预先设定的条款和条件。智能合约具有去中心化、透明、不可篡改等特点,因此被广泛应用于金融、供应链、物联网等领域。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流…

Spring Boot集成Minio插件快速入门

1 Minio介绍 MinIO 是一个基于 Apache License v2.0 开源协议的对象存储服务。它兼容亚马逊 S3 云存储服务接口,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等,而一个对象文件可以是任意大小&…