友思特应用 | 模型链接一应俱全:IC多类别视觉检测一站式解决方案

导读

高精度IC制造工艺需要对产品进行全方位检测以保证工艺质量过关。友思特 Neuro-T 通过调用平台的流程图功能,搭建多类深度学习模型,形成了一站式的视觉检测解决方案。本文将为您详述方案搭建过程与实际应用效果。


在当今集成电路(IC)制造领域,特别是对于高精度要求的工艺流程,如半导体芯片生产,快速准确地检测出缺陷至关重要,也有通过OCR识别芯片印刷字符从而明确缺陷芯片型号的需求。针对IC多类别视觉检测的需求,常规方式需要一一部署视觉检测模型,并编程实现多个模型的调度和交互逻辑。

友思特 Neuro-T 机器视觉软件,通过平台具备的流程图(Flowchart)功能,链接多个不同的深度学习模型,一站式解决同一目标多个视觉检测需求,并可以通过推理中心(Inference Center),模拟单/多模型部署的实际检测效果。

图片

友思特 Neuro-T 支持的深度学习模型类型

监督学习

分类

图片

将图像分类成不同类别或OK/NG组别

简单分类目标缺陷的有无,精度高

实例

分割

图片

分析图像中检测到的物体形状并圈选

准确识别并分割目标的缺陷区域,精度最高,适合占像素点少(低至10像素点)、形状较简单的目标

目标

检测

图片

检测图像中物体的类别、数量并定位

识别和定位目标的缺陷区域,精度高,适合占像素点稍多、形状较复杂的目标

OCR

字符

识别

图片

检测和识别图像中的字母、数字或符号

预置预训练模型,批量快速进行数据标注

旋转

图片

旋转图像至合适的方位

服务于其他类型的模型,提高其他模型的识别准确率

GAN

对抗生成网络

图片

学习图像中的缺陷区域并生成虚拟缺陷

人工生成目标的缺陷图像,弥补缺陷数据量不足的问题

无监督学习

异常

分类

图片

在大量正常图像和少量缺陷图像上训练以检测异常图像进行分类

分类目标缺陷的有无,精度高于分类模型(可设置异常阈值),主要适用于数据缺乏场景

异常

分割

图片

在大量正常图像和少量缺陷图像上训练以检测异常图像并定位缺陷位置

准确识别并分割异常目标的缺陷区域,精度略低于实例分割模型(可设置异常阈值),主要适用于数据缺乏场景

友思特 Neuro-T 流程图

图片

友思特Neuro-T的流程图功能,在视觉项目的图像标注和训练的同时,提供直观有效的UI组件,辅助项目流程的设计和梳理。通过链接多个不同的深度学习模型,平台不仅可以对图像中需要检测的目标进行高效的聚焦和高精度的检测,还可以同时执行不同的视觉任务,满足用户多样化的视觉检测需求。

以上图为例,初始图像内容包括平板以及三块需要检测的PCB对象,需要检测三块PCB的缺陷类型。该视觉检测项目通过链接三个深度学习模型完成:

  • 旋转模型:检测对象进入相机拍摄区域并不一定是同一姿态,通过旋转模型自动将图像旋转至合适的朝向,以利于后面的图像检测分割以及分类检测。

  • 目标检测模型:从图像中检测出需要检测的PCB对象,并按实际检测到的方框尺寸(也可以统一尺寸裁剪)来分割图像,得到裁剪出来的三个PCB对象的图像。

  • 分类模型:对分割后的三个PCB对象的图像分别通过目标分类模型,最终确认是属于哪种缺陷类型(脏污、划痕、孔洞)的PCB,并输出和可视化结果。

友思特 Neuro-T 推理中心

图片

友思特Neuro-T的推理中心,可以帮助用户快速地验证单个深度学习模型或多个深度学习模型链接之后的实际部署检测效果,分别以统计结果图像检测效果的形式呈现。可以查看各个环节的检测效果和统计结果,帮助用户改进视觉检测项目。最终可以分别导出单一的模型,自行设计模型推理逻辑,或包含多个深度学习模型以及他们之间的链接的单一流程图模型,无需自行设计多个模型之间的交互逻辑,即可完成复杂的多需求的视觉检测项目。

统计结果

图片

图像检测效果

图片

IC 视觉检测方案

方案一 

需求:检测IC芯片是否有引脚缺失,检测芯片表面字符印刷是否清晰,如清晰,进一步检测字符。

图片

字符检测

图片

引脚缺失检测

检测流程

(1)导入图像集,标注,训练,得到图像中IC芯片的目标检测模型

(2)调用目标检测模型,对IC芯片目标进行裁剪,得到只包含目标最小框的图像区域的新数据集,起动态ROI的作用,排除其他内容干扰后续检测结果。

(3)对上述得到的新数据集标注、训练,得到IC芯片的旋转模型,并通过该模型作用于原数据集,得到新数据集,其目的是将芯片旋转至合适朝向,便于后续检测,提高检测准确率。

(4)对上述得到的新数据集标注,训练,得到异常分类模型,将原数据集分类成“OK—字符印刷正常”和“NG--字符印刷异常”两个新数据集。

(5)对于“OK”的数据集,进一步标注训练,得到OCR字符识别模型,实现字符检测的效果。

(6)对于“NG”的数据集,进一步标注训练,得到实例分割模型,检测并分割出“NG”芯片是否有引脚缺失以及引脚缺失的区域,实现引脚缺失检测的效果。

图片

方案二 

需求:芯片是否引脚缺失,引脚缺失定位检测

检测流程

(1)导入图像集。

(2)标注,训练,得到图像中IC芯片的目标检测模型

(3)调用目标检测模型,对IC芯片目标进行裁剪,得到只包含目标最小框的图像区域的新数据集,起动态ROI的作用,排除其他内容干扰后续检测结果。

(4)对上述得到的新数据集只标注有引脚缺失的区域,训练,得到另一个目标检测模型。如果图像中有检测到引脚缺失的区域,则标记为NG;若无,则标记为OK。

图片

部署推理效果图(结合IDS相机)

图片

图片

友思特研发人员开发的视觉检测软件对接了我们的IDS相机和深度学习软件。右边功能区包括分类/分割/目标检测/流程图等6种深度学习模型的功能切换,以及IDS相机曝光和增益参数的调整,右上区域是检测结果图列表,可以右键保存到本地或回溯检测结果。左边大图是检测结果可视化,左下角小图是相机捕捉的原始图像,表格显示的是检测目标的相关信息,这里以置信度为例,也可以放置检测框的坐标/类别等信息,扇形图显示的是图中检测对象的类型占比,可以根据具体需求调整要显示的内容。输出区域显示的是程序运行的console。

友思特IC多类别视觉检测方案

Neuro-T

图片

Neuro-T 使用简单的图形用户界面,通过自动优化深度学习模型结构和训练参数来创建出性能最佳的模型,无需任何深度学习经验,即可运行自己的深度学习项目。在系统中,Neuro-T 是用于训练模型的核心工具。

Neuro-R

图片

Neuro-R 可实现无缝整合训练软件创建的模型至支持各种环境和编程语言的运行时 API,其独特性在于——不仅仅是简单地传递模型推断结果,还可以利用各种 API 以创造性的方式从多个模型生成结果,Neuro-R 是友思特缺陷检测系统套装的重要组成部分。

了解更多?欢迎访问官网,探索丰富案例:https://viewsitec.com/neurocle/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/29442.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SuiNS更新命名标准,增强用户体验

SuiNS将其面向用户的命名标准从 xxx.sui 更新为 xxx,让用户能够以一种适用于Web2和Web3世界的方式来代表自己。通过此更新,用户可以在其选择的名称前使用 ,而不是在名称后添加 .sui。 Sui命名服务于去年推出,旨在使Sui上的地址更…

TypeScript写好了,怎么运行啊!!!

环境搭建 Vs code Ctrlshiftp打开首选项—》打开工作区设置—》搜索Typescript 推荐开启的配置项主要是这几个: Function Like Return Types,显示推导得到的函数返回值类型;Parameter Names,显示函数入参的名称;Par…

Vxe UI vxe-modal 实现窗口的最大化与最小化,实现弹出多窗口

Vxe UI vue vxe-modal 实现窗口的最大化与最小化,实现弹出多窗口 通过js方式调用 js方式脱离模板,每次创建是多个实例。 mask:关闭遮罩层,如果不关闭则会显示遮罩层,就不能实现同时操作多窗口 lockView:…

win11右键小工具

开头要说的 在日常使用场景中,大家如果用的是新的笔记本电脑,应该都是安装的win11系统, 当然win11系统是最被诟病的, 因为有很多人觉得很难操作, 就比如一个小小的解压操作, 在win7和win10上&#xff…

Kubernetes CSR 颁发的 MinIO Operator 证书

在当前的 Kubernetes 环境中,创建、管理和自动化 TLS 证书的标准方法是使用 kind: CertificateSigningRequest (CSR)资源。此原生 Kubernetes 资源提供了一种强大而高效的方式来处理集群中证书的整个生命周期。 通过利用 CSR 资源&#xff0…

Thinkphp校园新闻发布系统源码 毕业设计项目实例

Thinkphp校园新闻发布系统源码 毕业设计项目实例 校园新闻发布系统模块: 用户模块:注册,登陆,查看个人信息,修改个人信息,站内搜索,新闻浏览等功能, 后台管理员模块:会员…

MySQL日志——redolog

redo log(重做日志) 为什么需要redo log? 在mysql提交一个事务后,这个事务所作的数据修改并不会直接保存到磁盘文件中,而是先保存在buffer pool缓冲区中,在需要读取数据时,先从缓冲区中找&…

破局消费供应链,企业费用管理如何应对变与不变?

供应链管理在过去一直被局限在生产与产品供应领域,更多被理解为生产及流通过程中,涉及将产品或服务提供给最终用户活动的上游与下游企业所形成的网链结构,即将产品从商家送到消费者手中整个链条。因为直接对企业利润产生重大影响,…

鸿蒙 Text文本过长超出Row的范围问题

代码如下: 可以发现随着文本内容的增加, 第二个组件test2明显被挤出了屏幕外, 感觉像是Row自己对内容的约束没做好一样, 目前没看到官方的推荐解决方法, 机缘巧合下找到了个这种的办法, 给内容会增加的组件设置layoutWeight(), 借助layoutWeight的特性来解决该问题, 改动后代码…

MaxKB-无需代码,30分钟创建基于大语言模型的本地知识库问答系统

简介 MaxKB 是一个基于大语言模型 (LLM) 的智能知识库问答系统。它能够帮助企业高效地管理知识,并提供智能问答功能。想象一下,你有一个虚拟助手,可以回答各种关于公司内部知识的问题,无论是政策、流程,还是技术文档&a…

热门:最新植物大战僵尸杂交版张大仙主播同款

软件介绍: 植物大战僵尸杂交版是由B站UP主“潜艇伟伟迷”制作的一款结合了《植物大战僵尸》原有元素与创新玩法的游戏。这款游戏以其独特的“杂交”植物概念在B站上迅速走红,吸引了大量玩家的关注和讨论。在杂交版中,每个植物都有专属的特点以及玩法&am…

苍穹外卖环境搭建

一、前端环境搭建 ①整体结构 ②前端工程基于nginx运行 启动nginx:双击 nginx.exe 即可启动 nginx 服务,访问端口号为 80 进入浏览器地址输入locallhost回车 二、后端环境搭建 后端初始工程基于maven进行项目构建,并且进行分模块开发 (1) idea打开初始…

WordPress——Argon主题美化

文章目录 Argon主题美化插件类类别标签页面更新管理器文章头图URL查询监视器WordPress提供Markdown语法评论区头像设置发信设置隐藏登陆备份设置缓存插件 主题文件编辑器页脚显示在线人数备案信息(包含备案信息网站运行时间)banner下方小箭头滚动效果站点功能概览下方Links功能…

分布式并行策略

1.数据并行(DP) 将小批量分为n块,每个GPU拿到完整参数计算一块数据的梯度。(通常性能会更好) 假如一个批量有128个样本,然后有2个GPU,那么每个GPU可以拿到64个样本。(每个GPU计算完…

【python】OpenCV—Segmentation

文章目录 cv2.kmeans牛刀小试 cv2.kmeans cv2.kmeans 是 OpenCV 库中用于执行 K-Means 聚类算法的函数。以下是根据参考文章整理的 cv2.kmeans 函数的中文文档: 一、函数功能 cv2.kmeans 用于执行 K-Means 聚类算法,将一组数据点划分到 K 个簇中&…

Altair 助力优化摩托车空气动力学性能,实现最佳的整流罩设计

案例简介 整流罩是绝大多数摩托车的重要组成部分,旨在提高车辆的空气动力学性能和稳定性。Altair 与 KTM 公司员工组成的项目团队,针对摩托车整流罩空气动力学方面的学生项目,展开了密切合作。 项目任务主要是对摩托车整流罩设计进行比较&…

山体滑坡监测利器:传感器与智能监测平台的应用

山体滑坡,这一地质灾害的代名词,指的是山坡上的土体或岩体在重力作用下,因自然或人为因素而向下滑动的现象。滑坡具有突发性、隐蔽性、危害性和破坏性等特征,因此,对于山体滑坡的监测工作显得尤为重要。本文将探讨山体…

豆包高质量声音有望复现-Seed-TTS

我们介绍了 Seed-TTS,这是一个大规模自回归文本转语音 (TTS) 模型系列,能够生成与人类语音几乎没有区别的语音。Seed-TTS 作为语音生成的基础模型,在语音上下文学习方面表现出色,在说话人的相似性和自然性方…

Vitis HLS 学习笔记--Stream Chain Matrix Multiplication

目录 1. 简介 2. 示例解析 2.1 示例功能说明 2.2 函数说明 2.2.1 mmult 函数 2.2.2 mm2s 函数 2.2.3 s2mm 函数 2.2.4 总示意图 3. 总结 1. 简介 这是一个包含使用数据流的级联矩阵乘法的内核。该内核启用了 ap_ctrl_chain,以展示如何重叠多个内核调用队…

2024年最好用的精简系统推荐!旧电脑福音!

精简版电脑系统经过精心优化,去除了冗余功能,保留了核心功能,让用户的操作更加便捷高效,同时也具备强大的兼容性和稳定性,整体操作体验感很好。但是,许多新手用户不知道在哪里才可以找到好用的精简版系统&a…