题目:455. 分发饼干
贪心第一题
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。或者小饼干先喂饱小胃口
首先要对 g 和 s进行排序这样才能知道最大的胃口和最大的饼干然后进行遍历即可
两种方法代码如下:
class Solution {
public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(),g.end());sort(s.begin(),s.end());int index = 0;for(int i = 0; i < s.size(); i++) { // 饼干 先小的满足小的if(index < g.size() && g[index] <= s[i]){ // 胃口index++;}}return index;}
};class Solution {
public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(), g.end());sort(s.begin(), s.end());int index = s.size() - 1; // 饼干数组的下标 int result = 0;for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口if (index >= 0 && s[index] >= g[i]) { // 遍历饼干result++;index--;}}return result;}
};
题目:376. 摆动序列
这题确实自己想复杂了 自己在想如何删除元素 因为最后只要计数确实最简单的方法就是遇到峰值就++ 单调的就不++
但是这道题目写代码的话细节还是很多的 需要看视频考虑多种情况
这里的局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),这个坡度就可以有两个局部峰值
这是我们思考本题的一个大体思路,但本题要考虑三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
完整代码如下:
class Solution {
public:int wiggleMaxLength(vector<int>& nums) {if (nums.size() <= 1) return nums.size();int curDiff = 0; // 当前一对差值int preDiff = 0; // 前一对差值int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值for (int i = 0; i < nums.size() - 1; i++) {curDiff = nums[i + 1] - nums[i];// 出现峰值if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {result++;preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff}}return result;}
};
题目:53. 最大子数组和
暴力解法的思路,第一层 for 就是设置起始位置,第二层 for 循环遍历数组寻找最大值
class Solution {
public:int maxSubArray(vector<int>& nums) {int result = INT32_MIN;int count = 0;for (int i = 0; i < nums.size(); i++) { // 设置起始位置count = 0;for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值count += nums[j];result = count > result ? count : result;}}return result;}
};
使用贪心的话 就是寻找局部极大值
如果 -2 1 在一起,计算起点的时候,一定是从 1 开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?
区间的终止位置,其实就是如果 count 取到最大值了,及时记录下来了。
class Solution {
public:int maxSubArray(vector<int>& nums) {int result = INT32_MIN;int count = 0;for (int i = 0; i < nums.size(); i++) {count += nums[i];if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)result = count;}if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和}return result;}
};