堆排序讲解

前言

在讲堆的删除时,我们发现一步一步删除堆顶的数据,排列起来呈现出排序的规律,所以本节小编将带领大家进一步理解堆排序。

1.堆排序概念

那么什么是堆排序?

堆排序(Heap Sort)是一种基于堆数据结构的排序算法。它利用堆的性质(大堆或小堆)进行排序操作。堆排序的基本思想是通过构建堆,将待排序的数组转化为一个符合堆性质的堆结构,然后不断将堆顶元素与堆的最后一个元素进行交换,并调整堆,使剩余元素继续满足堆的性质。重复这个过程,直到整个数组有序。

堆排序的步骤如下:

  1. 构建大堆或小堆:将待排序的数组视为一个完全二叉树,通过从最后一个非叶子节点开始,依次对每个节点进行向下调整(Adjustdown)操作,构建出一个大堆或小堆。这个过程确保了堆的性质:对于大堆,父节点的值大于等于其子节点的值;对于小堆,父节点的值小于等于其子节点的值。
  2. 排序:交换堆顶元素(最大值或最小值)与堆的最后一个元素,并将堆的大小减一。然后对堆顶元素进行向下调整,使剩余元素继续满足堆的性质。重复这个过程,直到堆的大小为1,即所有元素都已经排好序。(运用堆删除的思想
  3. 得到排序结果:经过上述步骤,数组中的元素就按照升序(从小到大)或降序(从大到小)排列了。

堆排序的时间复杂度为 O(nlogn),其中 n 是待排序数组的大小。它具有原地排序的特点,不需要额外的存储空间。

堆排序的优点是稳定性较好,适用于大规模数据的排序。然而,堆排序的缺点是相对较慢,尤其在快速排序等其他排序算法的应用场景中,堆排序的性能可能不如其他算法。

2.堆的建立方法

2.1向下调整建立堆(补充)

在这里,堆的建立有两种,在二叉树的顺序结构中提到一种建堆的方法,通过尾插再进行向上调整,不过时间复杂度为O(N*logN),这里提供新的建堆方法,通过向下调整法,时间复杂度为O(N),不过再用此调整方法时,左右子树要是堆的结构。即从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。

假设给一个数组 int a[]={4,2,8,1,5,6,9,7,2,7,9},通过向下调整法制造大堆。

2.2向上调整法

通过比较新插入元素与其父节点的值来判断是否需要进行交换。如果新插入元素的值大于父节点的值,就将它们进行交换,并更新索引值。这样,逐步向上调整,直到新插入元素找到了合适的位置,保证了堆的性质。

//向上调整
void Adjustup(Datatype* a,int child) {int parent = (child - 1) / 2;while (child > 0) {if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}elsebreak;}
}

2.3建堆时间复杂度分析

1.向下调整法

void Adjustdown(Datatype* a, int n, int parent) {//假设法,假设左孩子大int child = parent * 2 + 1;while (child < n ) {if (child + 1 < n && a[child + 1] > a[child])child = child + 1;if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else break;}
}

2.向上调整法
向上调整法每层节点向上调整次数就是乘以层数
//向上调整
void Adjustup(Datatype* a,int child) {int parent = (child - 1) / 2;while (child > 0) {if (a[child] > a[parent]) {Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}elsebreak;}
}

注意:上述代码都是采用建大堆的代码,建小堆把部分大于符号改成小于。
因此向下调整法实质上是节点数少的层,调整次数越多,向上调整是节点数越多,调整次数越多。

3.排序建堆选择

升序:建大堆
降序:建小堆
每次将堆首元素与尾元素交换,然后向下调整,每交换一次,堆的大小要减一,因为我们是每次将最大或者最小的元素依次交换堆后面。
例如升序的一个过程如下图:
void HeapSort(int* a, int n)
{//降序,建小堆// 升序,建大堆//for (int i = 1; i < n; i++)//{//	Adjustup(a, i);//}for (int i = (n - 1 - 1) / 2; i >= 0; i--){Adjustdown(a, n, i);}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);Adjustdown(a, end, 0);--end;}
}void TestHeap2()
{int a[] = {20,17,16,5,3,4 };HeapSort(a, sizeof(a) / sizeof(int));for (int i = 0; i < sizeof(a) / sizeof(int); i++) {printf("%d ", a[i]);}
}

4.TOP-K问题

TOP-K 问题:即求数据结合中前 K 个最大的元素或者最小的元素,一般情况下数据量都比较大
比如:专业前 10 名、世界 500 强、富豪榜、游戏中前 100 的活跃玩家等。
对于 Top-K 问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了 ( 可能数据都不能一下子全部加载到内存中) 。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前 K 个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余 N-K 个元素依次与堆顶元素比完之后,堆中剩余的 K 个元素就是所求的前 K 个最小或者最大的元素。
假如求一堆数中的前k个最小的数,则建大堆。
这里我们采用随机数来生成100个随机数,然后存入一个动态数组中,然后选出前10个最小的数。
void PrintTopK(int* a, int n, int k)
{// 1. 建堆--用a中前k个元素建堆for (int i = (k - 1 - 1) / 2; i >= 0; i--) {Adjustdown(a, k, i);}// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换for (int j = n - k; j < n; j++) {if (a[j] < a[0]) {a[0] = a[j];Adjustdown(a, k, 0);}}printf("最小前%d个数:", k);for (int i = 0; i < k; i++) {printf("%d ", a[i]);}
}
void TestTopk()
{int n = 100;int* a = (int*)malloc(sizeof(int) * n);srand(time(0));for (size_t i = 0; i < n; ++i){a[i] = rand() % 100;}PrintTopK(a, n, 10);}

本节内容到此结束,谢谢各位友友的捧场,下节小编将带领大家继续了解二叉树的链式存储结构!!!

留下三连和评论吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/25012.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络学了点socket,写个聊天室,还得改进

目录 第一版: common 服务端: 客户端 第一版问题总结: 第二版 服务端: 客户端: 改进: Windows客户端 一些小问题 还可以进行的改进 这篇文章我就先不讲网络基础的东西了,我讲讲在我进行制作我这个拉跨聊天室中遇到的问题,并写了三版代码. 第一版: common #pragm…

SpringBoot-集成TOTP

TOTP验证码提供了一种高效且安全的身份验证方法。它不仅减少了依赖短信或其他通信方式带来的成本和延时&#xff0c;还通过不断变换的密码增加了破解的难度。未来&#xff0c;随着技术的进步和对安全性要求的提高&#xff0c;TOTP及其衍生技术将继续发展并被更广泛地应用。TOTP…

多模态模型是什么意思(国内外的AI多模态有哪些)

在人工智能和机器学习的领域&#xff0c;我们经常会遇到一些专业术语&#xff0c;这些术语可能会让初学者感到困惑。其中&#xff0c;"多模态模型"就是这样一个概念。 什么是AI多模态。它是什么意思呢&#xff1f; 那么&#xff0c;多模态模型是什么意思呢&#xff1…

【Python】数据处理:SQLite操作

使用 Python 与 SQLite 进行交互非常方便。SQLite 是一个轻量级的关系数据库&#xff0c;Python 标准库中包含一个名为 sqlite3 的模块&#xff0c;可以直接使用。 import sqlite3数据库连接和管理 连接到 SQLite 数据库。如果数据库文件不存在&#xff0c;则创建一个新数据库…

SystemVerilog Interface Class的妙用

前言 Interface Class是在SystemVerilog 2012版本中引入的&#xff0c;但目前在验证中几乎很少采用&#xff0c;大多数验证工程师要么不知道它&#xff0c;要么没有看到使用它的任何好处&#xff0c;这使得Interface Class成为一个未被充分使用和不被重视的特性。本文将举两个…

docker镜像深入理解

大家好&#xff0c;本篇文章和大家聊下docker相关的话题~~ 工作中经常有关于docker镜像的问题&#xff0c;让人百思不解 docker镜像加载到系统中到哪里去了&#xff1f;docker load 加载镜像的流程是怎样的&#xff1f;为什么容器修改内容后&#xff0c;删除容器后再次开启容…

阿里云 MQTT 服务器搭建与测试(上传和下发数据finish)

一、 MQTT 概念 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),是一种基于发布/订阅(publish/subscribe)模式的"轻量级"通讯协议,该协议构建于 TCP/IP协议上,由 IBM 在 1999 年发布。MQTT 最大优点在于,可以以极少的代码和有限的带宽,…

c++之旅第十弹——IO流

大家好啊&#xff0c;这里是c之旅第十弹&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦&#xff01; 一.流的概念&…

kNN算法-概述

所谓kNN算法就是K-nearest neigbor algorithm。这是似乎是最简单的监督机器学习算法。在训练阶段&#xff0c;kNN算法存储了标签训练样本数据。简单地说&#xff0c;就是调用训练方法时传递给它的标签训练样本会被它存储起来。 kNN算法也叫lazy learning algorithm懒惰学习算法…

计算机网络 期末复习(谢希仁版本)第8章

元文件就是一种非常小的文件&#xff0c;它描述或指明其他文件的一些重要信息。这里的元文件保存了有关这个音频/视频文件的信息。 10. 流式&#xff1a;TCP&#xff1b;流式实况&#xff1a;UDP。

Huawei 大型 WLAN 组网 AC 间漫游

AC1配置命令 <AC6005>display current-configuration # vlan batch 100 # interface Vlanif100description to_S3_CAPWAPip address 10.0.100.254 255.255.255.0 # interface GigabitEthernet0/0/1port link-type trunkport trunk allow-pass vlan 100# ip route-stati…

Chrome浏览器书签同步不及时怎么办?两种方法帮你解决!

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;CSDN博客专家   &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01…

7种方法教你如何解决msvcp140_1.dll丢失问题,一键修复dll丢失问题

msvcp140_1.dll 是 Microsoft Visual C 2015 Redistributable 的一部分&#xff0c;它提供了运行时所需的 C 标准库的实现。这个 DLL 文件对于依赖 Visual C 2015 编译的应用程序至关重要&#xff0c;因为它包含了程序运行时所必需的函数和资源。 作用 运行时支持&#xff1a…

28-LINUX--I/O复用-epoll

一.epoll概述 epoll 是 Linux 特有的 I/O 复用函数。它在实现和使用上与 select、poll 有很大差异。首 先&#xff0c;epoll 使用一组函数来完成任务&#xff0c;而不是单个函数。其次&#xff0c;epoll 把用户关心的文件描述 符上的事件放在内核里的一个事件表中。从而无需像…

mysql (事物)

一.什么是事物 事物是一组操作的集合&#xff0c;不可分割的工作单位&#xff0c;事物会把所有的操作当作一个整体一起向系统提交或撤销操作请求&#xff0c;就是这些操作要么一起成功要么一起失败。 二.事物操作 &#xff08;这个就是一个理解&#xff09; 1.事务特性 原子性…

超详解——python数字和运算——小白篇

目录 1.位运算 2. 常用内置函数/模块 math模块&#xff1a; random模块&#xff1a; decimal模块&#xff1a; 3.内置函数&#xff1a; 总结&#xff1a; 1.位运算 位运算是对整数在内存中的二进制表示进行操作。Python支持以下常见的位运算符&#xff1a; 按位与&…

C语言王国——数据的内存管理

目录 一、引言 二、整形在内存中的存储 2.1 进制之间的转换 2.1.1 整形的二进制 2.1.2 十进制和二进制 2.1.3 十进制和八进制的转换 2.1.4 十六进制和十进制的转换 2.2 原码&#xff0c;反码&#xff0c;和补码 三、大、小端字节序 3.1 大小端的定义 3.2 为什么会有大…

pxe批量部署linux介绍

1、PXE批量部署的作用及必要性&#xff1a; 1&#xff09;智能实现操作系统的批量安装&#xff08;无人值守安装&#xff09;2&#xff09;减少管理员工作&#xff0c;提高工作效率3&#xff09;可以定制操作系统的安装流程a.标准流程定制(ks.cfg)b.自定义流程定制(ks.cfg(%pos…

LLVM Cpu0 新后端8 尾调用优化 Stack Overflow Exception异常

想好好熟悉一下llvm开发一个新后端都要干什么&#xff0c;于是参考了老师的系列文章&#xff1a; LLVM 后端实践笔记 代码在这里&#xff08;还没来得及准备&#xff0c;先用网盘暂存一下&#xff09;&#xff1a; 链接: https://pan.baidu.com/s/1V_tZkt9uvxo5bnUufhMQ_Q?…

【iOS】JSONModel源码阅读笔记

文章目录 前言一、JSONModel使用二、JSONModel其他方法转换属性名称 三、源码分析- (instancetype)initWithDictionary:(NSDictionary*)dict error:(NSError **)err[self init]__setup____inspectProperties - (BOOL)__doesDictionary:(NSDictionary*)dict matchModelWithKeyMa…