特征交叉系列:DCN-Mix 混合低秩交叉网络理论和实践

DCN-Mix和DCN-V2的关系

DCN-Mix(a mixture of low-rank DCN)是基于DCN-V2的改进版,它提出使用矩阵分解降低DCN-V2的时间空间复杂度,又引入多次矩阵分解来达到类似混合专家网络MOE的效果从而提升交叉层的表征能力,若读者对DCN-V2不甚了解可以参考上一节[特征交叉系列:Deep&Cross(DCN-V2)理论和实践]做知识铺垫。


DCN-V2权重矩阵的低秩性和矩阵分解

在DCN-V2中核心的参数是交叉层的权重矩阵W,该参数是M×M的方阵,其中M是所有输入embedding拼接后的向量总长度,每一层交叉之间W不共享,W矩阵需要学习的参数数量能占到所有参数量的70%以上,而进一步作者发现随着网络的训练,W矩阵的奇异值出现快速下降呈现出低秩特性,代表该矩阵存在信息冗余,因此可以考虑通过矩阵分解来进行特征提取和信息压缩。
在PyTorch中可以通过torch.linalg.svd计算出矩阵的奇异值,例如

>>> a = torch.tensor([[1, 1], [1, 1.1]])
>>> u, s, v = torch.linalg.svd(a)
>>> print(s)
tensor([2.0512, 0.0488])

其中s是对角阵,斜对角线上的值就是奇异值,a矩阵的第二行几乎可以从第一行线性变换而来,因此s各位置上的奇异值差距极大,第一个奇异值基本携带了全部的矩阵信息。
在DCN-V2的训练代码里面,打印出第一个交叉层初始化的W矩阵和训练早停后W矩阵的奇异值,奇异值的长度和输入长度M一致,代码如下

# 初始化时
model = DCN(field_num=10, feat_dim=72, emb_num=16, order_num=2, dropout=0.1, method='parallel').to(DEVICE)
init_s = torch.linalg.svd(model.cross_net.cell_list[0].w)[1].cpu().detach().numpy().tolist()
# 早停时
if early_stop_flag:train_s = torch.linalg.svd(model.cross_net.cell_list[0].w)[1].cpu().detach().numpy().tolist()break

奇异值列表中元素大小逐个递减,对init_s和train_s分别做最大最小归一化,要求第一个奇异值归因化为1,

init_s = [(x - min(init_s)) / (max(init_s) - min(init_s)) for x in init_s]
train_s = [(x - min(train_s)) / (max(train_s) - min(train_s)) for x in train_s]

然后做图看一下初始矩阵的奇异值和收敛后的奇异值的各个位置元素的大小情况

import matplotlib.pylab as plt
plt.scatter(list(range(len(init_s))), init_s, label='init', s=3)
plt.scatter(list(range(len(train_s))), train_s, label='learned', s=3)
plt.legend(loc=0)
plt.show()

init和learned奇异值下降对比

相比于初始化阶段(蓝线),模型收敛后(橙线)的W矩阵奇异值急速下降,说明头部的奇异值已经携带了大部分矩阵信息,W矩阵可以考虑做压缩。
在论文中作者将W分解为U,V两个矩阵的相乘,其中U,V都是维度为[M, R]的二维矩阵,M和输入等长,R<=M/2,公式如下

矩阵分解

此时一个交叉权重的参数数量由M平方降低为2×MR。


DCN-Mix的混合专家网络

DCN-Mix使用矩阵UV分解来逼近原始的交叉矩阵W,受到MOE(Mixture of Experts)混合专家网络的启发,作者对W进行多次矩阵分解,单个矩阵分解相当于单个专家网络(Expert)在子空间学习特征交叉,再引入门控机制(Gate)对多个子空间的交叉结果进行自适应地融合,从而提高交叉层的表达能力,DCN结合MOE的示意图如下

MOE示意图

其中该层的输入Input x分别进入n个Expert专家网络,专家网络中包含UV矩阵相乘,同时Input x输入给一个门控网络Gate+Softmax输出n个权重标量,最后Input x会和加权求和的专家网络结果做残差连接。
将矩阵分解和MOE结合起来形成最终的交叉层公式如下

结合MOE的矩阵分解交叉层

相比于DCN-V2,等号左侧的哈达玛积部分改为了一个Σ加权求和的UV矩阵逼近,而右侧的残差连接放到最后和MOE的结果一起做残差连接。


DCN-Mix在PyTorch下的实践

本次实践的数据集和上一篇特征交叉系列:完全理解FM因子分解机原理和代码实战一致,采用用户的购买记录流水作为训练数据,用户侧特征是年龄,性别,会员年限等离散特征,商品侧特征采用商品的二级类目,产地,品牌三个离散特征,随机构造负样本,一共有10个特征域,全部是离散特征,对于枚举值过多的特征采用hash分箱,得到一共72个特征。
DCN-Mix的PyTorch代码实现如下

class Embedding(nn.Module):def __init__(self, feat_num, emb_num):super(Embedding, self).__init__()self.embedding = nn.Embedding(feat_num, emb_num)nn.init.xavier_normal_(self.embedding.weight.data)def forward(self, x):# [None, filed_num] => [None, filed_num, emb_num] => [None, filed_num * emb_num]return self.embedding(x).flatten(1)class DNN(nn.Module):def __init__(self, input_num, hidden_nums, dropout=0.1):super(DNN, self).__init__()layers = []input_num = input_numfor hidden_num in hidden_nums:layers.append(nn.Linear(input_num, hidden_num))layers.append(nn.BatchNorm1d(hidden_num))layers.append(nn.ReLU())layers.append(nn.Dropout(p=dropout))input_num = hidden_numself.mlp = nn.Sequential(*layers)for layer in self.mlp:if isinstance(layer, nn.Linear):nn.init.xavier_normal_(layer.weight.data)def forward(self, x):return self.mlp(x)class CrossCell(nn.Module):"""一个交叉单元"""def __init__(self, input_num, r):super(CrossCell, self).__init__()self.v = nn.Parameter(torch.randn(input_num, r))self.u = nn.Parameter(torch.randn(input_num, r))self.b = nn.Parameter(torch.randn(input_num, 1))nn.init.xavier_normal_(self.v.data)nn.init.xavier_normal_(self.u.data)def forward(self, x0, xi):# [None, emb_num] => [None, emb_num, 1]xi = xi.unsqueeze(2)x0 = x0.unsqueeze(2)# [r, input_num] * [None, emb_num, 1] => [None, r, 1]# [input_num, r] * [None, r, 1] => [None, emb_num, 1]xii = (torch.matmul(self.u, torch.matmul(self.v.t(), xi)) + self.b) * x0return xii  # [None, emb_num, 1]class MOECrossCell(nn.Module):def __init__(self, input_num, r, k):super(MOECrossCell, self).__init__()self.k = kself.cross_cell = nn.ModuleList([CrossCell(input_num, r) for i in range(self.k)])self.gate = nn.Linear(input_num, self.k)nn.init.xavier_normal_(self.gate.weight.data)def forward(self, x0, xi):# [None, emb_num] => [None, emb_num, 1]xii = xi.unsqueeze(2)export_out = []for i in range(self.k):cross_out = self.cross_cell[i](x0, xi)# [[None, emb_num, 1], [None, emb_num, 1], [None, emb_num, 1], [None, emb_num, 1]]export_out.append(cross_out)export_out = torch.concat(export_out, dim=2)  # [None, emb_num, 4]# [None, k] => [None, 1, k]gate_out = self.gate(xi).softmax(dim=1).unsqueeze(dim=1)# [None, emb_num, 4] * [None, 1, k] = [None, emb_num, k] => [None, emb_num, 1]out = torch.sum(export_out * gate_out, dim=2, keepdim=True)out = out + xii  # [None, emb_num, 1]return out.squeeze(2)class CrossNet(nn.Module):def __init__(self, order_num, input_num, r, k):super(CrossNet, self).__init__()self.order = order_numself.cell_list = nn.ModuleList([MOECrossCell(input_num, r, k) for i in range(order_num)])def forward(self, x0):xi = x0for i in range(self.order):xi = self.cell_list[i](x0=x0, xi=xi)return xiclass DCN(nn.Module):def __init__(self, field_num, feat_dim, emb_num, order_num, r=16, k=4, dropout=0.1, method='parallel',hidden_nums=(128, 64, 32)):super(DCN, self).__init__()input_num = field_num * emb_numself.embedding = Embedding(feat_num=feat_dim, emb_num=emb_num)self.dnn = DNN(input_num=input_num, hidden_nums=hidden_nums, dropout=dropout)self.cross_net = CrossNet(order_num=order_num, input_num=input_num, r=r, k=k)if method not in ('parallel', 'stacked'):raise ValueError('unknown combine type: ' + method)self.method = methodlinear_dim = hidden_nums[-1]if self.method == 'parallel':linear_dim = linear_dim + input_numself.linear = nn.Linear(linear_dim, 1)nn.init.xavier_normal_(self.linear.weight.data)def forward(self, x):emb = self.embedding(x)  # [None, field * emb_num]cross_out = self.cross_net(emb)  # [None, input_num]if self.method == 'parallel':dnn_out = self.dnn(emb)  # [None, input_num]out = torch.concat([cross_out, dnn_out], dim=1)else:out = self.dnn(cross_out)  # [None, input_num]out = self.linear(out)return torch.sigmoid(out).squeeze(dim=1)

在CrossCell模块中完成了一个给予UV逼近的交叉操作,在MOECrossCell模块中完成了MOE和残差连接,其中export_out和gate_out分别为专家网络的输出和门控机制的权重。
本例全部是离散分箱变量,所有有值的特征都是1,因此只要输入有值位置的索引即可,一条输入例如

>>> train_data[0]
Out[120]: (tensor([ 2, 10, 14, 18, 34, 39, 47, 51, 58, 64]), tensor(0))

x的长度为10代表10个特征域,每个域的值是特征的全局位置索引,从0到71,一共72个特征。


DCN-Mix调参和效果对比

对阶数(order_num)和融合策略(method)这两个参数进行调参,分别尝试1~4层交叉层,stacked和parallel两种策略,采用10次验证集AUC不上升作为早停条件,验证集的平均AUC如下

DCN调参AUC并行parallel串行stacked
1层交叉(2阶)0.63450.6321
2层交叉(3阶)0.63280.6323
3层交叉(4阶)0.63310.6333
4层交叉(5阶)0.63400.6331

结论依旧是parallel效果好于stacked,其中一层交叉的并行parallel达到验证集最优AUC为0.6345。
再对比一下之前文章中实践的FM,FFM,PNN,DCN-V2等一系列算法,验证集AUC和参数规模如下

算法AUC参数量
FM0.6274361
FFM0.63172953
PNN*0.634229953
DeepFM0.632212746
NFM0.632910186
DCN-parallel-30.6348110017
DCN-stacked-30.6344109857
DCN-Mix-parallel-10.634554501
DCN-Mix-stacked-30.633397869

使用矩阵分解逼近策略的DCN-Mix略低于原生的DCN-V2,但是还是超越一众FM系列的算法,其中以同样是三层交叉的stacked DCN为例,DCN-Mix的参数量相比于DCN-V2有所降低,也印证了论文中提到的“在模型效果和部署延迟之间找到一个平衡”。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/23846.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux shell脚本启动springboot服务

1.脚本代码 xx.sh&#xff0c;自己随意命名 #!/bin/bash# 设置变量 JAR_NAME"xssq-1.0.0.jar" JAR_PATH"./$JAR_NAME" PID0#检查程序是否在运行 is_exist(){PIDps -ef|grep $JAR_NAME|grep -v grep|awk {print $2} #如果不存在返回1&#xff0c;存在返回0…

评价GPT-4的方案

评价GPT-4的方案 引言: 随着人工智能技术的不断发展,自然语言处理领域取得了显著的突破。其中,GPT-4作为最新的大型语言模型之一,备受关注。本方案旨在对GPT-4进行全面评价,包括其技术特点、性能表现、应用场景以及潜在的影响等方面。 一、技术特点 1. 模型规模和参数数…

微信小程序使用自定义tabbar被组件遮挡调试层级没有用

在我自定义使用tabbar的时候&#xff0c;发现使用vant weapp环形进度条的时候把tabbar给遮挡了&#xff0c;查看了文章说没什么好的解决办法&#xff0c;但是也有&#xff0c;链接在此 我是直接修改的自定义组件的标签view标签和image标签都使用cover- image和cover-view代替就…

部署kubesphere报错

安装kubesphere报错命名空间terminted [rootk8smaster ~]# kubectl apply -f kubesphere-installer.yaml Warning: apiextensions.k8s.io/v1beta1 CustomResourceDefinition is deprecated in v1.16, unavailable in v1.22; use apiextensions.k8s.io/v1 CustomResourceDefini…

618科技好物清单:物超所值的产品推荐,总有一款适合你!

随着科技的不断发展&#xff0c;我们生活中涌现出了越来越多的科技创新产品。这些产品不仅让我们的生活变得更加便捷&#xff0c;还提升了我们的生活品质。而在即将到来的618购物节&#xff0c;正是我们购买这些物超所值科技好物的绝佳时机。 本文将为您推荐一些在618期间值得关…

软光敏的程序实现

软光敏的程序实现通常涉及到使用摄像头或其他图像捕捉设备的内部sensor来感应环境光线&#xff0c;并结合软件算法来控制补光灯或其他相关设备的开关。以下是一个简化的软光敏程序实现的示例流程&#xff0c;使用伪代码来描述&#xff1a; pseudo 初始化摄像头 while 摄像头开…

每天一个数据分析题(三百五十五)-业务分析报告

业务分析报告的主要作用是将业务分析报表中发现的业务问题进行汇总说明&#xff0c;并进一步提出解决问题的建议&#xff0c;以帮助阅读者做出正确的决策判断。业务分析报告撰写的注意事项中正确的是&#xff1f; A. 条理清晰、结构完整 B. 论点明确 C. 图、表、文字相结合 …

英伟达的数字孪生地球是什么

1 英伟达的数字孪生地球 Earth-2是一个全栈式开放平台&#xff0c;包含&#xff1a;ICON 和 IFS 等数值模型的物理模拟&#xff1b;多种机器学习模型&#xff0c;例如 FourCastNet、GraphCast 和通过 NVIDIA Modulus 实现的深度学习天气预测 (DLWP)&#xff1b;以及通过 NVIDI…

Go理论-面试题

面向对象&#xff1f; 面向对象是一种方法论。一种非常实用的系统化软件开发方法。 三大特点&#xff1a;封装、继承、多态 Go和Java的区别 Go不允许重载&#xff0c;Java允许Java允许多态&#xff0c;Go没有&#xff08;但可以通过接口实现&#xff09;Go语言的继承通过匿…

手撕设计模式——克隆对象之原型模式

1.业务需求 ​ 大家好&#xff0c;我是菠菜啊&#xff0c;前俩天有点忙&#xff0c;今天继续更新了。今天给大家介绍克隆对象——原型模式。老规矩&#xff0c;在介绍这期之前&#xff0c;我们先来看看这样的需求&#xff1a;《西游记》中每次孙悟空拔出一撮猴毛吹一下&#x…

pytorch-nn.Module

目录 1. nn.Module2. nn.Sequential容器3. 网络参数parameters4. Modules内部管理5. checkpoint6. train/test状态切换6. 实现自己的网络层6.1 实现打平操作6.2 实现自己的线性层 7. 代码 1. nn.Module 是所有nn.类的父类&#xff0c;其中包括nn.Linear nn.BatchNorm2d nn.Con…

每日一练 - OSPF协议验证机制

01 真题题目 OSPF 只有在 Hello 报文中有验证信息,OSPF 支持 MD5 密文验证. A.正确 B.错误 02 真题答案 B 03 答案解析 这个陈述是不完全正确的。首先&#xff0c;OSPF确实使用Hello报文来携带认证信息&#xff0c;但这不意味着只有Hello报文包含验证信息。 OSPF的认证机制可…

政府绩效考核第三方评估的含义

政府绩效考核第三方评估是指由独立于政府的外部机构&#xff08;如专业评估公司、研究机构或非政府组织&#xff09;对政府部门或其下属单位的绩效进行客观、公正、系统的评估。其主要目的是通过引入独立的第三方评估机构&#xff0c;对政府绩效进行科学、全面的考核&#xff0…

【AIGC调研系列】Qwen2与llama3对比的优势

Qwen2与Llama3的对比中&#xff0c;Qwen2展现出了多方面的优势。首先&#xff0c;从性能角度来看&#xff0c;Qwen2在多个基准测试中表现出色&#xff0c;尤其是在代码和数学能力上有显著提升[1][9]。此外&#xff0c;Qwen2还在自然语言理解、知识、多语言等多项能力上均显著超…

肺结节14问,查出肺结节怎么办?哪些能用中医调治消散?快来了解一下吧

近些年&#xff0c;随着大众防癌意识的加强&#xff0c;和胸部低剂量CT的普及&#xff0c;肺结节的检出率也逐年升高&#xff0c;不少患者CT报告上&#xff0c;写着“肺小结”“肺部磨玻璃结节”的字样&#xff0c;当你看到这几个字时&#xff0c;会不会瞬间紧张起来&#xff1…

编程规范-代码检测-格式化-规范化提交

适用于vue项目的编程规范 – 在多人开发时统一编程规范至关重要 1、代码检测 --Eslint Eslint&#xff1a;一个插件化的 javascript 代码检测工具 在 .eslintrc.js 文件中进行配置 // ESLint 配置文件遵循 commonJS 的导出规则&#xff0c;所导出的对象就是 ESLint 的配置对…

简化电动汽车充电器和光伏逆变器的高压电流检测

在任何电气系统中&#xff0c;电流都是一个至关重要的参数。电动汽车 (EV) 充电系统和太阳能系统都需要检测电流的大小&#xff0c;以便控制和监测功率转换、充电和放电。电流传感器通过监测分流电阻器上的压降或导体中电流产生的磁场来测量电流。 金属氧化物半导体场效应晶体…

DBeaver连接MySQL提示“Public Key Retrieval is not allowed“问题的解决方式

问题描述 客户端root用户连接数据库出现出现Public Key Retrieval is not allowed 原因分析&#xff1a; 加上allowPublicKeyRetrievalfalse&#xff1a; 解决方案&#xff1a; allowPublicKeyRetrievaltrue&#xff1a;

Java Web学习笔记14——BOM对象

BOM&#xff1a; 概念&#xff1a;浏览器对象模型&#xff08;Browser Object Model&#xff09;&#xff0c;允许JavaScript与浏览器对话&#xff0c;JavaScript将浏览器的各个组成部分封装为对象。 组成&#xff1a; Window&#xff1a;浏览器窗口对象 介绍&#xff1a;浏览…

opencv锐化卷积核的定义和应用(图像锐化)。

定义锐化卷积核 卷积核&#xff08;Kernel&#xff09;是一个小矩阵&#xff0c;它用于在图像处理操作中&#xff0c;比如模糊、锐化、边缘检测等。卷积核通过卷积操作应用于图像像素&#xff0c;产生新的图像。 在锐化操作中&#xff0c;我们通常使用一个 3x3 的卷积核。以下…