【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment

论文:https://arxiv.org/abs/2404.16022
代码:https://github.com/ToTheBeginning/PuLID

文章目录

  • Abstract
  • Introduction
  • Related Work
  • Methods

Abstract

我们提出了一种新颖的、无需调整的文本生成图像ID定制方法——Pure and Lightning ID customization(PuLID)。通过将Lightning T2I分支与标准扩散分支结合,PuLID引入了对比对齐损失和准确ID损失,最大程度地减少了对原始模型的干扰,确保了高ID保真度。实验表明,PuLID在ID保真度和可编辑性方面都表现出色。PuLID的另一个吸引人的特性是,在插入ID前后,图像的元素(例如背景、光照、构图和风格)尽可能保持一致。代码和模型将会发布在https://github.com/ToTheBeginning/PuLID。

Introduction

作为一种特定类别的定制化文本生成图像(T2I)方法【5, 30, 12, 17, 40, 42】,身份(ID)定制允许用户适配预训练的T2I扩散模型,以符合他们的个性化ID。一类方法【5, 30, 12, 17】通过在用户提供的同一ID的若干图像上微调某些参数,从而将ID嵌入到生成模型中。这些方法催生了许多流行的AI肖像应用程序,如PhotoAI和EPIK。

尽管基于微调的解决方案取得了可观的成果,但每个ID的定制需要耗费数十分钟的微调时间,因此使个性化过程经济成本较高。另一类方法【41, 42, 2, 36, 20, 19, 38】则放弃了每个ID微调的必要性,转而在一个庞大的肖像数据集上预训练一个ID适配器【11, 24】。这些方法通常利用编码器(例如CLIP图像编码器【27】)提取ID特征。然后,将提取的特征以特定方式(例如嵌入到交叉注意力层中)整合到基础扩散模型中。尽管这些无需微调的方法效率极高,但面临两个显著挑战。

  • ID插入会破坏原始模型的行为。一个纯粹的ID信息嵌入应具有两个特征。首先,理想的ID插入应仅改变与ID相关的方面,如面部、发型和肤色,而与特定身份不直接相关的图像元素,如背景、光照、构图和风格,应该与原始模型的行为保持一致。据我们所知,以前的工作并未关注这一点。尽管一些研究【42, 38, 20】展示了生成风格化ID的能力,但与ID插入前的图像相比,风格明显退化(如图1所示)。具有较高ID保真度的方法往往会导致更严重的风格退化。

其次,在ID插入后,仍应保持原始T2I模型遵循提示的能力。在ID定制的背景下,这通常意味着能够通过提示改变ID属性(例如年龄、性别、表情和发型)、方向和配件(例如眼镜)。为了实现这些特性,目前的解决方案通常分为两类。第一类涉及增强编码器。IPAdapter【42, 1】从早期版本的CLIP提取网格特征转向利用面部识别骨干【4】提取更抽象和相关的ID信息。尽管编辑性有所改善,但ID保真度还不够高。InstantID【38】通过包括一个额外的ID和标志控制网【43】来进行更有效的调节。尽管ID相似性显著提高,但却牺牲了一定程度的编辑性和灵活性。第二类方法【20】通过构建按ID分组的数据集支持非重建训练以增强编辑性;每个ID包含若干图像。然而,创建这样的数据集需要付出巨大的努力。而且,大多数ID对应于有限数量的名人,这可能会限制其对非名人的效果。

  • 缺乏ID保真度。考虑到我们对面部的高度敏感性,在ID定制任务中保持高度的ID保真度至关重要。受GAN时代【7】面部生成任务【29, 39】成功经验的启发,提高ID保真度的一个直接想法是在扩散训练中引入ID损失。然而,由于扩散模型的迭代去噪特性【10】,实现准确的x0需要多个步骤。以这种方式训练所消耗的资源可能高得令人望而却步。因此,一些方法【2】直接从当前时间步预测x0,然后计算ID损失。然而,当当前时间步较大时,预测的x0往往嘈杂且有缺陷。在这种条件下计算ID损失显然不准确,因为面部识别骨干【4】是在照片级真实感图像上训练的。尽管提出了一些变通方法,如仅在噪声较小的时间步计算ID损失【25】或通过额外的推理步骤预测x0【45】,但仍有改进空间。

在这项工作中,为了在减少对原始模型行为影响的同时保持高ID保真度,我们提出了PuLID,一种通过对比对齐实现的纯粹和快速的ID定制方法。具体而言,我们引入了一个Lightning T2I分支以及标准扩散去噪训练分支。利用最近的快速采样方法【23, 32, 21】,Lightning T2I分支可以在有限且可控的步骤内从纯噪声生成高质量图像。通过这个额外的分支,我们可以同时解决上述两个挑战。首先,为了最小化对原始模型行为的影响,我们构建了一个对比对,其中包括相同提示和初始潜在变量,有和没有ID插入。在Lightning T2I过程中,我们在语义上对齐对比对的UNet特征,指导ID适配器如何插入ID信息而不影响原始模型的行为。其次,由于我们现在在ID插入后有了精确和高质量的生成x0,我们可以自然地提取其面部嵌入并与真实面部嵌入计算准确的ID损失。值得一提的是,这种x0生成过程与实际测试环境一致。我们的实验表明,在这种情况下优化ID损失可以显著提高ID相似性。

贡献总结如下:(1) 我们提出了一种无需调整的方法,即PuLID,在减轻对原始模型行为影响的同时保持高ID相似性。(2) 我们引入了一个Lightning T2I分支和常规扩散分支。在这个分支中,我们结合了对比对齐损失和ID损失,以最小化ID信息对原始模型的污染,同时确保保真度。与当前主流方法提高ID编码器或数据集相比,我们提供了新的视角和训练范式。(3) 实验表明,我们的方法在ID保真度和可编辑性方面实现了SOTA性能。此外,与现有方法相比,我们的方法对模型的ID信息侵扰较少,使得我们的方法在实际应用中更加灵活。

Related Work

基于微调的文本生成图像ID定制。文本生成图像模型的ID定制旨在使预训练模型能够生成特定身份的图像,同时遵循文本描述。两个开创性的基于微调的工作【5, 30】努力实现这一目标。Textual Inversion【5】为用户提供的ID优化了一个新的词嵌入,而Dreambooth【30】则通过微调整个生成器进一步增强了保真度。随后,各种方法【12, 17, 8, 35】在生成器和嵌入空间探索了不同的微调范式,以实现更高的ID保真度和文本对齐。尽管这些进展显著,但每个ID的耗时优化过程(至少需要几分钟)限制了其更广泛的应用。

无需微调的文本生成图像ID定制。为了减少在线微调所需的资源,一系列无需微调的方法【36, 38, 25, 42, 20, 41, 3】应运而生,这些方法直接将ID信息编码到生成过程中。这些方法面临的主要挑战是,在保持高ID保真度的同时,尽量减少对T2I模型原始行为的干扰。为了最小化干扰,一个可行的方法是使用面部识别模型【4】提取更抽象和相关的面部领域特定表示,就像IP-Adapter-FaceID【1】和InstantID【38】所做的那样。包含同一ID的多张图像的数据集可以促进共同表示的学习【20】。尽管这些方法取得了一定的进展,但它们还没有从根本上解决干扰问题。值得注意的是,ID保真度较高的模型往往会对原始模型的行为造成更大的干扰。在本研究中,我们提出了一种新的视角和训练方法来解决这一问题。有趣的是,该方法不需要按ID分组的数据集,也不局限于特定的ID编码器。

为了提高ID保真度,以前的工作【16, 2】使用了ID损失,这一做法受到了先前基于GAN的工作【29, 39】的启发。然而,在这些方法中,通常在当前时间步使用单一步骤直接预测x0,这往往会导致嘈杂和有缺陷的图像。这些图像对于面部识别模型【4】来说并不理想,因为它们是在真实世界的图像上训练的。PortraitBooth【25】通过仅在噪声较小的阶段应用ID损失来缓解这一问题,但这忽略了早期步骤中的损失,从而限制了其整体有效性。Diffswap【45】通过使用两步而不是一步来获得更好的预测x0,尽管这种估计仍然包含嘈杂的伪影。在我们的工作中,通过引入Lightning T2I训练分支,我们可以在更准确的设置中计算ID损失。

我们注意到一个同时进行的工作LCM-Lookahead【6】,它也使用了快速采样技术(即LCM【23】)来实现更精确的x0预测。然而,该工作与我们的工作有几个不同之处。首先,LCM-Lookahead在传统的扩散去噪过程中对x0进行精确预测,而我们从纯噪声开始,迭代去噪到x0。我们的方法与实际测试设置更一致,使得ID损失的优化更加直接。其次,为了增强提示编辑能力,LCM-Lookahead利用了SDXL-Turbo【32】的模式崩溃现象来合成一致的ID数据集。然而,合成的数据集可能面临多样性和一致性挑战,作者发现,使用该数据集训练可能比其他方法更频繁地产生风格化结果。相比之下,我们的方法不需要按ID分组的数据集。相反,我们通过一种更基础和直观的方法,即对比对齐,来增强提示跟随能力。

扩散模型的快速采样。在实践中,扩散模型通常在1000步内进行训练。在推理过程中,这种冗长的过程可以借助高级采样方法【33, 22, 15】缩短到几十步。最近基于蒸馏的工作【21, 23, 32】进一步将这一生成过程加速到10步以内。其核心动机是指导学生网络对齐与基础教师模型更远的点。在本研究中,我们引入的Lightning T2I训练分支利用了SDXL-Lightning【21】加速技术,从而使我们能够在仅4步内从纯噪声生成高质量图像。

Methods

在这里插入图片描述
图2:PuLID框架概述。框架的上半部分展示了传统的扩散训练过程。从同一图像中提取的面部用作ID条件 ( C_{\text{id}} )。框架的下半部分展示了本研究中引入的Lightning T2I训练分支。该分支利用了最新的快速采样方法,通过几步迭代去噪从纯噪声生成高质量图像(本文中为4步)。在这个分支中,我们构建了有ID注入和无ID注入的对比路径,并引入了对齐损失,以指导模型如何在不破坏原始模型行为的情况下插入ID条件。由于该分支可以生成照片级真实感图像,这意味着我们可以实现更准确的ID损失优化。

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/23617.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信好友朋友圈的三天、半年可见怎么破?方法拿走不谢

『Code掘金』问大家,有没有这种经历,当你想去翻某人的朋友圈时,对方设置成了3天可见,之前的内容没法看到了。 不过没关系!今天『Code掘金』给大家分享一款导出朋友圈的工具,让大家留住痕迹。 WechatMomen…

初探沁恒CH32V307VCT6评估板 1-1外部中断EXTI

旋转编码器计次 1,创建 .C .H 文件 Count_Sonser.c Count_Sonser.h 2,包含头文件 #include "ch32v30x.h" //#include "debug.h" #include "Count_Sonser.h" 注意:如果不包含第一第二个头文件uint、int这…

如何掌握 Java 正则表达式 的基本语法及在 Java 中的应用

正则表达式是一种用于匹配字符串的模式,在许多编程语言中广泛使用。Java 正则表达式提供了强大的文本处理能力,能够对字符串进行查找、替换、分割等操作。 一、正则表达式的基本语法 正则表达式由普通字符和特殊字符组成。普通字符包括字母、数字和标点…

网络协议三

数据中心 一、DNS 现在网站的数目非常多,常用的网站就有二三十个,如果全部用 IP 地址进行访问,恐怕很难记住 根 DNS 服务器 :返回顶级域 DNS 服务器的 IP 地址 顶级域 DNS 服务器:返回权威 DNS 服务器的 IP 地址 …

汇凯金业:贵金属交易规则有哪些

贵金属投资目前非常火热,许多投资者从中获得了可观的收益。新手投资者在进入贵金属市场及其交易之前,务必要了解清楚贵金属的交易规则。了解规则和差异能帮助新手更好地进行贵金属投资交易。下面我们以现货类贵金属为例,详细说明贵金属的交易…

一周学会Django5 Python Web开发 - Django5内置Auth认证系统-用户修改密码实现

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计59条视频,包括:2024版 Django5 Python we…

基于springboot的-仓库 管理系统【附:资料➕文档】

前言:我是源码分享交流Coding,专注JavaVue领域,专业提供程序设计开发、源码分享、 技术指导讲解、各类项目免费分享,定制和毕业设计服务! 免费获取方式--->>文章末尾处! 项目介绍: 管理员…

数字IC后端物理验证PV | TSMC 12nm Calibre Base Layer DRC案例解析

基于TSMC 12nm ARM A55 upf flow后端设计实现训练营将于6月中旬正式开班!小班教学!目前还有3个名额,招满为止!有需要可以私信小编 ic-backend2018报名。吾爱IC社区所有训练营课程均为直播课! 这个课程支持升级成双核A…

服务器禁止密码登陆

转载请标明出处:https://blog.csdn.net/donkor_/article/details/139444224 文章目录 一、前言二、编辑sshd_config文件三、重启服务四、总结 一、前言 复杂的密码,登陆服务器的时候,也是很不方便的。并且频繁登陆,暴露给外界&am…

c++ 里函数选择的优先级:普通函数、模板函数、万能引用,编译器选择哪个执行呢?

看大师写的代码时,除了在类里定义了 copy 构造函数,移动构造函数,还定义了对形参采取万能引用的构造函数,因此有个疑问,这时候的构造函数优先级是什么样的呢?简化逻辑测试一下,如下图&#xff0…

【Vue】路由的封装抽离

问题:所有的路由配置都在main.js中合适吗? 目标:将路由模块抽离出来。 好处:拆分模块,利于维护 路径简写: 脚手架环境下 指代src目录,可以用于快速引入组件 完整代码 router/index.js // 但…

探索贷款交易平台的技术架构与创新应用

随着金融科技的快速发展,贷款交易平台作为金融行业的重要组成部分,正扮演着越来越重要的角色。本文将深入探讨贷款交易平台的技术架构和创新应用,从前端设计、后端系统、安全保障和智能化服务等方面进行全面解析,帮助读者更好地了…

【Python报错】已解决AttributeError: list object has no attribute ’shape‘ ( Solved )

解决Python报错:AttributeError: ‘list’ object has no attribute ‘shape’ (Solved) 在Python中,AttributeError表明你试图访问的对象没有你请求的属性或方法。如果你遇到了AttributeError: list object has no attribute shape的错误,这…

为什么要用Git

1. Git是什么 1.1. 概述 Git是分布式版本控制系统,与SVN类似的集中化版本控制系统相比,集中化版本控制系统如果中央服务器宕机则会影响数据和协同开发。 Git是分布式的版本控制系统,客户端不只是提取最新版本的快照,而且将整个…

【Java毕业设计】基于Java的特色美食推荐网站的设计与实现

文章目录 摘 要ABSTRACT目 录1 概述1.1 研究背景及意义1.2 国内外研究现状1.3 拟研究内容1.4 系统开发技术1.4.1 Java编程语言1.4.2 SpringBoot框架1.4.3 MySQL数据库1.4.4 B/S结构1.4.5 MVC模式 2 系统需求分析2.1 可行性分析2.2 任务概述2.3 功能性需求3.2.2 数据库逻辑结构设…

外汇天眼:FSCS确认TenetConnect Services Ltd已任命管理人

2024年6月5日,Tenet Group Ltd的董事们任命了Interpath Ltd的Ed Boyle、Howard Smith和Rob Spence为联合管理人。Ed Boyle和Rob Spence也被任命为其子公司Tenet Ltd、TenetConnect Ltd和TenetConnect Services Ltd的联合管理人。Tenet Mortgage Services Ltd和Tenet…

【计算机视觉(8)】

基于Python的OpenCV基础入门——图像直方图 直方图图像直方图 图像直方图代码以及实现效果 直方图 直方图是一种用于描述图像亮度分布的统计工具。它将图像的像素亮度值按照不同的亮度等级进行计数,并以直方图的形式呈现出来。图像直方图可以显示图像中每个亮度级别…

点击式的excel电子表格查找修改功能,比xlookup和vlookup简单,多列关联查询速度更快

经过实际测试,excel的xlookup确实非常简单,有部分功能也非常快。但是有的人不会公式,或者不喜欢用公式,或者没有excel2021以上的版本。而且xlookup确实也有些还不是很完美的地方,比如对多列关联查询很慢。所以我们还是…

selenium非全新的方式同时启动多个浏览器又互不影响的一种实现方法,欢迎讨论!

最近在做模拟浏览器批量定时自动点击实现批量操作功能,主要使用selenium,但是发现selenium直接调用本地浏览器,启动的是一个全新的(与手动打开的不一致),网站可以检测到,每次都要双重验证(密码登…

Windows系统中不同Java版本共存

Windows系统中不同Java版本共存的方法 在Windows系统中,有时我们需要同时运行多个Java应用,而这些应用可能依赖于不同版本的Java Development Kit (JDK) 或 Java Runtime Environment (JRE)。为了实现这种需求,我们需要在Windows中配置多个J…