基于细节增强卷积和内容引导注意的单图像去雾

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 摘要
  • Abstract
  • 文献阅读:DEA-Net:基于细节增强卷积和内容引导注意的单图像去雾
    • 1、研究背景
    • 2、方法提出
    • 3、相关知识
      • 3.1、DEConv
      • 3.3、多重卷积的计算
      • 3.3、FAM
      • 3.4、CGA
    • 4、实验
      • 4.1、数据集
      • 4.2、评价指标
      • 4.3、实验结果
      • 5、贡献
  • 二、CGA模块代码学习
    • 1、空间注意力模块
    • 2、通道注意力模块
    • 3、像素注意力模块
  • 总结


摘要

本周主要阅读了文章,DEA-Net:基于细节增强卷积和内容引导注意的单图像去雾。该论文提出了提出了一种细节增强注意力块(DEAB),该模块由一个细节增强卷积(DEConv)和一个内容引导的注意力(CGA)机制组成,使得模型能够更好地保留图像的细节信息,同时又能关注图像中的重要信息,从而达到更好的去雾效果。除此之外,还学习学习了CGA模块的注意力代码模块的学习。

Abstract

This week, I mainly read the article DEA-Net: Single Image De-Fogging Based on Detail Enhancement Convolution and Content Guided Attention. This paper proposes a detail enhancement attention block DEAB, which consists of a detail enhancement convolution DEConv and a content guided attention CGA mechanism. This module enables the model to better preserve the details of the image while also focusing on important information in the image, thus achieving better de-fogging effects. In addition, I also learned about the attention code module of the CGA module.


文献阅读:DEA-Net:基于细节增强卷积和内容引导注意的单图像去雾

Title: DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention
Author:Zixuan Chen, Zewei He†, Zhe-Ming Lu
From:JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

1、研究背景

单张图像去雾是一个低级视觉任务,旨在从单张受雾影响的图像中恢复其清晰的场景。图像去雾在许多计算机视觉应用中都有需求,例如自动驾驶、无人机、监控系统等。在这些应用中,准确的场景感知和物体识别对于系统的可靠性和安全性至关重要。当然单图像去雾是一个具有挑战性的问题,它从观测到的雾图像中估计潜在的无雾图像。一些现有的基于深度学习的方法致力于通过增加卷积的深度或宽度来提高模型性能。卷积神经网络(CNN)的学习能力仍然没有得到充分探索。

2、方法提出

本文提出了一种细节增强注意力块(DEAB),DEA-Net是一种用于单张图像去雾的深度学习网络。它采用类似U-Net的编码器-解码器结构,由三部分组成:编码器部分、特征转换部分和解码器部分。在去雾等低级视觉任务中,从编码器部分融合特征与解码器部分的特征是一种有效的技巧。该模块由一个细节增强卷积(DEConv)和一个内容引导的注意力(CGA)机制组成。DEConv包含并行的普通卷积和差异卷积,五个卷积层(四个差异卷积和一个普通卷积),这些卷积层并行部署用于特征提取。 此外,复杂的注意力机制(即CGA)是一个两步注意力生成器,它可以首先产生粗略的空间注意力图,然后对其进行细化。
在这里插入图片描述

3、相关知识

3.1、DEConv

DEConv包含五个卷积层(四个差异卷积和一个普通卷积),这些卷积层并行部署用于特征提取。具体来说,采用中心差分卷积(CDC)、角差分卷积(ADC)、水平差分卷积(HDC)和垂直差分卷积(VDC)将传统的局部描述符集成到卷积层中,从而可以增强表示能力和泛化能力。在差异卷积中,首先计算图像中的像素差异,然后与卷积核卷积以生成输出特征图。通过设计像素对的差异计算策略,可以将先验信息显式编码到CNN中。这些卷积用于特征提取和学习,可以增强表示能力和泛化能力。
在这里插入图片描述

3.3、多重卷积的计算

VC、CDC、ADC、HDC和VDC的核函数,与图像进行卷积,最后并行卷积结合在一起。
在这里插入图片描述

3.3、FAM

FAM(Feature attention module)是一种用于图像去雾的注意力机制模块,它包含通道注意力和空间注意力两部分。FAM通过对不同通道和像素进行不平等处理,提高了去雾性能。然而,FAM的空间注意力只能在图像级别上解决不均匀的雾分布问题,忽略了其他维度。以此有以下几个缺点:

  1. 空间注意力机制:FAM中的空间注意力只能在图像级别上解决不均匀的雾分布问题,这意味着它无法处理多尺度维度的雾分布问题。在处理具有复杂雾分布的图像时,这可能会导致去雾效果不佳。
  2. 通道特异性SIMs(空间注意图):FAM在计算注意力权重时,只使用了一个单一通道来表示输入特征的重要区域,而输入特征的通道数量相对较大。这可能导致注意力权重的计算不够准确,从而影响去雾效果。
  3. 两个注意力权重之间缺乏信息交换:在FAM中,通道注意力和空间注意力是顺序计算的,它们之间没有信息交换。这意味着它们可能无法充分考虑彼此的特点,从而影响去雾效果。

3.4、CGA

CGA(Content-Guided Attention)是一种内容引导注意力机制,用于提高图像恢复任务中神经网络的性能。CGA是一种粗细处理过程,首先生成粗略的空间注意力图,然后根据输入特征图的每个通道进行细化,以产生最终的空间注意力图。CGA通过使用输入特征的内容来引导注意力图的生成,从而更加关注每个通道的唯一特征部分,可以更好地重新校准特征,学习通道特定的注意力图,以关注通道之间的雾霾分布差异。CGA的工作过程分为两步:

  1. 生成粗略的空间注意力图。这是一个粗细处理过程,通过生成一个粗略的注意力图,可以快速捕捉到图像中的主要特征。
  2. 根据输入特征图的每个通道对注意力图进行细化。这一步的目的是使注意力图更加精确,能够关注到特征图中的独特部分。

在这里插入图片描述

4、实验

4.1、数据集

  1. SOTS:SOTS是一个包含1000张室内和室外清晰图像以及对应的带有不同雾度的模糊图像的数据集。该数据集分为训练集、验证集和测试集。SOTS数据集的图像具有丰富的场景和复杂的雾度,因此可以有效地评估图像去雾方法在各种情况下的性能。
  2. Haze4K:Haze4K数据集包含4000张带有不同雾度的室内和室外图像,用于训练和测试图像去雾方法。该数据集分为训练集和测试集。Haze4K数据集的图像具有较高的分辨率和丰富的场景,可以有效地训练和评估图像去雾方法。

4.2、评价指标

  1. PSNR:峰值信噪比(Peak Signal-to-Noise Ratio)是一种用于衡量图像质量的评价指标。它通过计算去雾图像与清晰图像之间的均方误差(MSE)来评估图像去雾方法的性能。PSNR的计算公式为:PSNR = 10 * log10(255^2 / MSE) 。其中,255是像素值的范围,MSE是去雾图像与清晰图像之间的均方误差。PSNR值越高,说明去雾图像的质量越好,图像去雾方法的性能也就越好。
  2. SSIM:结构相似度指数(Structural Similarity Index)是一种用于衡量图像结构信息的评价指标。它通过比较去雾图像与清晰图像之间的亮度、对比度和结构信息来评估图像去雾方法的性能。SSIM的计算公式为:SSIM = (2 * μx * μy + C1) * (2 * σxy + C2) / ((μx^2 + μy^2 + C1) * (σx^2 + σy^2 + C2))。其中,μx和μy分别是去雾图像和清晰图像的平均灰度值,σx2和σy2分别是去雾图像和清晰图像的方差,σxy是去雾图像和清晰图像的协方差,C1和C2是常数。SSIM值越高,说明去雾图像的结构信息与清晰图像越相似,图像去雾方法的性能也就越好。

4.3、实验结果

在这里插入图片描述

5、贡献

  1. Detail-Enhanced Convolution (DEConv)
    作者提出了Detail-Enhanced Convolution (DEConv),这是一种包含并行的vanilla和difference卷积的新型卷积方式。DEConv第一次引入差分卷积来解决图像去噪问题。传统的卷积操作主要是通过滑动窗口在输入图像上进行操作,而差分卷积则是在卷积操作中引入了差分的思想,使得卷积核在不同的位置具有不同的权重,这样可以更好地捕捉图像中的细节信息,提高去噪效果。DEConv的引入,使得模型能够更好地保留图像的细节信息,提高图像去雾的性能。

  2. Content-Guided Attention (CGA)
    作者还提出了Content-Guided Attention (CGA),这是一种创新的注意力机制。CGA为每个通道分配唯一的SIM,引导模型关注每个通道的重要区域。这样可以强调编码在特征中的更多有用信息,以有效提高去雾性能。CGA的引入,使得模型能够更加关注图像中的重要信息,忽略无关的信息,从而提高图像去雾的效果。此外,作者还将DEConv与CGA相结合,提出了DEA-Net的主要模块,即细节增强注意模块 (DEAB)。DEAB的引入,使得模型能够更好地保留图像的细节信息,同时又能关注图像中的重要信息,从而达到更好的去雾效果 。

二、CGA模块代码学习

1、空间注意力模块


class SpatialAttention(nn.Module):def __init__(self):super(SpatialAttention, self).__init__()self.sa = nn.Conv2d(2, 1, 7, padding=3, padding_mode='reflect', bias=True)# 定义一个二维卷积层self.sa,输入通道数为2,输出通道数为1,卷积核大小为7x7  # padding=3表示在输入数据的周围填充3个像素,保持空间尺寸不变  # padding_mode='reflect'表示使用反射填充方式  # bias=True表示卷积层使用偏置项  def forward(self, x):  x_avg = torch.mean(x, dim=1, keepdim=True)  # 计算输入x在通道维度(dim=1)上的平均值,并保持输出的维度与输入相同  x_max, _ = torch.max(x, dim=1, keepdim=True)  # 找到输入x在通道维度上的最大值,并忽略最大值的索引(用_表示)  # 同样保持输出的维度与输入相同  x2 = torch.cat([x_avg, x_max], dim=1)  # 将x_avg和x_max沿着通道维度(dim=1)拼接起来,得到新的张量x2  # 此时x2的通道数是x的两倍  sattn = self.sa(x2)  # 将x2作为输入传递给之前定义的卷积层self.sa,得到输出sattn  return sattn  # 返回计算得到的空间注意力图sattn

2、通道注意力模块

class ChannelAttention(nn.Module):  def __init__(self, dim, reduction=8):  # 初始化方法,接收输入特征的通道数dim和一个可选的通道数减少比例reduction(默认为8super(ChannelAttention, self).__init__()  # 定义了一个自适应平均池化层,输出大小为1x1,用于对每个通道内的所有元素进行平均  self.gap = nn.AdaptiveAvgPool2d(1)  # 定义了一个顺序模型self.ca,包含两个卷积层和一个ReLU激活函数  self.ca = nn.Sequential(  # 第一个卷积层将输入特征的通道数从dim减少到dim // reduction,使用1x1的卷积核,无填充,并使用偏置  nn.Conv2d(dim, dim // reduction, 1, padding=0, bias=True),  # ReLU激活函数对第一个卷积层的输出进行非线性变换,inplace=True表示直接在输入数据上进行修改  nn.ReLU(inplace=True),  # 第二个卷积层将通道数从dim // reduction恢复到原始的dim,同样使用1x1的卷积核和无填充  nn.Conv2d(dim // reduction, dim, 1, padding=0, bias=True),  )  def forward(self, x):  # 对输入x进行自适应平均池化操作,得到每个通道的平均值  x_gap = self.gap(x)  # 将池化后的结果x_gap传递给self.ca顺序模型,计算通道注意力权重  cattn = self.ca(x_gap)  # 返回计算得到的通道注意力权重  return cattn

3、像素注意力模块

class PixelAttention(nn.Module):  def __init__(self, dim):  super(PixelAttention, self).__init__()  # 定义一个二维卷积层,输入通道数为2*dim,输出通道数为dim,  # 卷积核大小为7x7,填充大小为3(使用reflect模式),分组数为dim,并使用偏置项。  self.pa2 = nn.Conv2d(2 * dim, dim, 7, padding=3, padding_mode='reflect', groups=dim, bias=True)  # 定义一个Sigmoid激活函数  self.sigmoid = nn.Sigmoid()  def forward(self, x, pattn1):  """  前向传播方法,接收两个输入:特征图x和另一个注意力图pattn1。  """  # 获取输入x的形状  B, C, H, W = x.shape  # 在x的通道维度之后增加一个新的维度,大小为1  x = x.unsqueeze(dim=2)  # 在pattn1的通道维度之后增加一个新的维度,大小为1  pattn1 = pattn1.unsqueeze(dim=2)   # 将x和pattn1在第二个维度(现在的大小为2)上进行拼接  x2 = torch.cat([x, pattn1], dim=2) # 使用Rearrange函数对x2的形状进行重排,将通道数和第二个维度的大小合并成一个维度  x2 = Rearrange('b c t h w -> b (c t) h w')(x2)  # 将重排后的x2输入到卷积层self.pa2中  pattn2 = self.pa2(x2)  # 对卷积层的输出应用Sigmoid激活函数  pattn2 = self.sigmoid(pattn2)  # 返回计算得到的像素注意力权重pattn2  return pattn2  

总结

本周主要阅读了文章,DEA-Net:基于细节增强卷积和内容引导注意的单图像去雾。该论文提出了提出了一种细节增强注意力块(DEAB),该模块由一个细节增强卷积(DEConv)和一个内容引导的注意力(CGA)机制组成,使得模型能够更好地保留图像的细节信息,同时又能关注图像中的重要信息,从而达到更好的去雾效果。除此之外,我还学习学习了CGA模块的注意力代码模块的学习。下周再接再厉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/23086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言指针与数组名的联系

目录 一、数组名的理解 a.数组名代表数组首元素的地址 b. 两个例外 二、使用指针来访问数组 三、一维数组传参的本质 一、数组名的理解 a.数组名代表数组首元素的地址 我们在使用指针访问数组的内容时,有这样的代码: int arr[10] {1,2,3,4,5,6,7,…

枚举(enum)+联合体(union)

枚举联合 一.枚举类型1.枚举类型的声明2.枚举类型的优点3.枚举类型的使用 二.联合体1.联合体类型的声明2.联合体的特点3.相同成员的结构体和联合体对比4.联合体大小的计算5.联合体的练习(判断大小端)6.联合体节省空间例题 一.枚举类型 1.枚举类型的声明…

Sentinel1.8.6更改配置同步到nacos(项目是Gateway)

本次修改的源码在:https://gitee.com/stonic-open-source/sentinel-parent 一 下载源码 地址:https://github.com/alibaba/Sentinel/releases/tag/1.8.6 二 导入idea,等待maven下载好各种依赖 三 打开sentile-dashboard这个模块&#xf…

华为手机录屏在哪里?图文详解帮你找!

随着科技的进步,智能手机已成为我们日常生活中不可或缺的工具。其中,华为手机凭借其卓越的性能和用户体验,在全球范围内赢得了广泛的赞誉。在众多功能中,录屏功能尤为实用,无论是制作教程、记录游戏精彩瞬间&#xff0…

压敏电阻器是在规定温度下,当电压超过某一临界值时电导随电压的升高而急速增大的一种电阻器

压敏电阻器是在规定温度下,当电压超过某一临界值时电导随电压的升高而急速增大的一种电阻器。压敏电阻器的伏安特性是非线性的,因此,压敏电阻器亦称为非线性电阻器,非线性来自于压敏电阻器两端的外加电压,其伏安特性如图 9-1所示。从图9-1可以看出,压敏电阻器有对称型和非对称型…

网络运维简介

目录 1.网络运维的定义 2.诞生背景 3.网络运维的重要性 4.优点 5.缺点 6.应用场景 6.1.十个应用场景 6.2.数据中心运维 7.应用实例 8.小结 1.网络运维的定义 网络运维(Network Operations)是指管理、监控和维护计算机网络以确保其高效、安全和…

Python私教张大鹏 Vue3整合AntDesignVue之文本组件

案例&#xff1a;展示标题 核心代码&#xff1a; <a-typography><a-typography-title>Introduction</a-typography-title> </a-typography>vue3示例&#xff1a; <template><a-typography><a-typography-title>这是一个标题</…

【K8s】专题四(6):Kubernetes 控制器之 Job

以下内容均来自个人笔记并重新梳理&#xff0c;如有错误欢迎指正&#xff01;如果对您有帮助&#xff0c;烦请点赞、关注、转发&#xff01;欢迎扫码关注个人公众号&#xff01; 目录 一、基本介绍 二、工作原理 三、相关特性 四、资源清单&#xff08;示例&#xff09; 五…

电路分析答疑 1

三要素法求解的时候&#xff0c; 电容先求U&#xff0c;再利用求导求I 电感先求I&#xff0c;再利用求导求U 若I的头上没有点点&#xff0c;那就是求有效值 叠加定理&#xff0c;不要忘记 若电流值或者电压值已经给出来了&#xff0c;那就说明这一定是直流电。 在画画圈的时候…

数据库(25)——多表关系介绍

在项目开发中&#xff0c;进行数据库表结构设计时&#xff0c;会根据业务需求及业务模块之间的关系&#xff0c;分析并设计表结构&#xff0c;各个表之间的结构基本上分为三种&#xff1a;一对多&#xff0c;多对多&#xff0c;一对一。 一对多 例如&#xff0c;一个学校可以有…

Mac修改Mysql8.0密码

转载请标明出处&#xff1a;http://blog.csdn.net/donkor_/article/details/139392605 文章目录 前言修改密码Step1:修改my.conf文件Step2:添加配置skip-grant-tablesStep3:重启mysql服务Step4:进入mysqlStep5:刷新权限Step6:修改密码Step7:再次刷新权限Step8:删除/注释 skip-…

DNS域名

DNS域名 DNS是域名系统的简称 域名和ip地址之间的映射关系 互联网中&#xff0c;ip地址是通信的唯一标识 访问网站&#xff0c;域名&#xff0c;ip地址不好记&#xff0c;域名朗朗上口&#xff0c;好记。 域名解析的目的就是为了实现&#xff0c;访问域名就等于访问ip地址…

【Python】 获取当前日期的Python代码解析与应用

标题&#xff1a;Python中获取当前日期的简单指南 基本原理 在Python中&#xff0c;获取当前日期是一个常见的需求&#xff0c;尤其是在处理日志、数据记录和时间相关的任务时。Python提供了多种方式来获取和处理日期和时间&#xff0c;其中最常用的模块是datetime。datetime…

多客陪玩系统-开源陪玩系统平台源码-支持游戏线上陪玩家政线下预约等多场景应用支持H5+小程序+APP

多客陪玩系统-开源陪玩系统平台源码-支持游戏线上陪玩家政按摩线下预约等多场景应用支持H5小程序APP 软件架构 前端&#xff1a;Uniapp-vue2.0 后端&#xff1a;Thinkphp6 前后端分离 前端支持&#xff1a; H5小程序双端APP&#xff08;安卓苹果&#xff09; 安装教程 【商业…

QT C++ QTableWidget 表格合并 setSpan 简单例子

这里说的合并指的是单元格&#xff0c;不是表头。span的意思是跨度、宽度、范围。 setSpan函数需要设定行、列、行跨几格&#xff0c;列跨几格。 //函数原型如下 void QTableView::setSpan(int row, i nt column, 、 int rowSpanCount,/*行跨过的格数*/ int columnSpanCount…

【算法无用系列】电影推荐——余弦相似度计算用户相似度原理

【算法无用系列】通过余弦相似度计算电影、用户相似度 话不多说&#xff0c;本文通过电影推荐系统中&#xff0c;基于余弦相似度算法计算出用户相似和电影相似原理。希望可以帮助一些代码不懂的同学一些思路。 记录用户电影评分数据 一般情况来说&#xff0c;会根据用户的行为…

什么是数字化转型?

作者&#xff1a; 峡山老曹 数字神化 ”企业如何实现数字化转型“是摆在现代企业面前一个无法回避的问题&#xff0c;数字化转型的重要性不容忽视&#xff0c;它不仅是企业适应数字化时代的必然要求&#xff0c;更是提升竞争力、实现可持续发展的关键。随着科技的飞速发展和市场…

八、C语言:操作符详解

一、移位操作符 1.1左移操作 左边丢弃&#xff0c;右边补0 1.2右移操作 算数右移&#xff1a;右边丢弃&#xff0c;左边补原符号位 逻辑右移&#xff1a;右边丢弃&#xff0c;左边补0 int main() {int a -1;int b a >> 1;printf("b%d\n",b);return 0; } 原码…

【Linux进程篇】Linux进程管理应用——虚假的shell脚本

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; 前言&#xff1a;我们已经了解了进程的工作原理&#xff0c;并且学习了进程创建、进程终止、进程等待以及进程程序替换。为了更好的巩固这些知识&#xff0c;我们可以创建一个简易的shell命令行。 目录 做一个简易的s…

GAT1399协议分析(六)--校时

一、官方消息定义 DeviceIDType &#xff1a;GA/T1400.1,采集设备、 卡口点位、 采集系统、分析系统、视图库、应用平台等设备编码规则 TimeCorrectModeType&#xff1a; dateTime时间格式&#xff1a; TimeZone&#xff1a;时区&#xff0c;GAT1400里面没有找到具体内容&…