AI网络爬虫:用GraphQL查询爬取动态网页数据

任务:爬取网站www.skillshare.com搜索结果页面数据:

查看网站的请求信息:

请求网址:

https://www.skillshare.com/api/graphql

请求方法:

POST

状态代码:

200 OK

远程地址:

127.0.0.1:10809

引荐来源网址政策:

strict-origin-when-cross-origin

请求载荷:

{"operationName":"GetClassesQuery","variables":{"query":"ChatGPT","where":{"level":["ALL_LEVELS","BEGINNER","INTERMEDIATE","ADVANCED"]},"analyticsTags":["src:browser","src:browser:search","disc_cls_idx_mig","user-agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"],"after":"191","first":24},"query":"fragment ClassFields on Class {\n badges {\n type\n __typename\n }\n durationInSeconds\n id\n publishTime\n largeCoverUrl\n sku\n sourceLanguage\n studentCount\n teacher {\n id\n name\n username\n vanityUsername\n __typename\n }\n title\n url\n viewer {\n hasSavedClass\n __typename\n }\n __typename\n}\n\nquery GetClassesQuery($query: String!, $where: SearchFiltersV2!, $analyticsTags: [String!], $after: String!, $first: Int!, $sort: SortParameters) {\n search: searchV2(query: $query, where: $where, analyticsTags: $analyticsTags, after: $after, first: $first, sort: $sort) {\n totalCount\n searchId\n algorithmId\n pageInfo {\n startCursor\n endCursor\n hasNextPage\n hasPreviousPage\n __typename\n }\n edges {\n cursor\n node {\n ...ClassFields\n __typename\n }\n __typename\n }\n __typename\n }\n}\n"}

{"operationName":"GetClassesQuery","variables":{"query":"ChatGPT","where":{"level":["ALL_LEVELS","BEGINNER","INTERMEDIATE","ADVANCED"]},"analyticsTags":["src:browser","src:browser:search","disc_cls_idx_mig","user-agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"],"after":"167","first":24},"query":"fragment ClassFields on Class {\n badges {\n type\n __typename\n }\n durationInSeconds\n id\n publishTime\n largeCoverUrl\n sku\n sourceLanguage\n studentCount\n teacher {\n id\n name\n username\n vanityUsername\n __typename\n }\n title\n url\n viewer {\n hasSavedClass\n __typename\n }\n __typename\n}\n\nquery GetClassesQuery($query: String!, $where: SearchFiltersV2!, $analyticsTags: [String!], $after: String!, $first: Int!, $sort: SortParameters) {\n search: searchV2(query: $query, where: $where, analyticsTags: $analyticsTags, after: $after, first: $first, sort: $sort) {\n totalCount\n searchId\n algorithmId\n pageInfo {\n startCursor\n endCursor\n hasNextPage\n hasPreviousPage\n __typename\n }\n edges {\n cursor\n node {\n ...ClassFields\n __typename\n }\n __typename\n }\n __typename\n }\n}\n"}

这段请求载荷是一个GraphQL查询,用于获取与搜索查询 "ChatGPT" 相关的不同方面的数据(facets)。下面是对这段查询的详细解释:

- `operationName`: "GetFacets",这指定了操作的名称,用于标识这个特定的查询操作。

- `variables`: 这是一个对象,包含了查询所需的变量:

- `analyticsTags`: 一个包含多个字符串的数组,用于分析目的。

- `query`: 搜索查询的关键字,这里是 "ChatGPT"。

- `where_type`, `where_language`, `where_level`, `where_length`, `where_with`, `where_publish`, `where_rating`: 这些字段包含了搜索过滤条件,每个字段都设置为相同的值,即包含所有级别("ALL_LEVELS", "BEGINNER", "INTERMEDIATE", "ADVANCED")的数组。这些过滤条件用于指定搜索的不同维度。

- `query`: 这是GraphQL查询的主体,它定义了要获取的数据:

- `fragment FacetsData on SearchResultItemConnectionV2`: 这是一个片段,定义了搜索结果项连接的类型,包括总数量(totalCount)和方面(facets)。

- `totalCount`: 搜索结果的总数。

- `facets`: 一个包含不同方面选项的对象数组,每个选项都有计数(count)和名称(name)。

- 接下来的部分定义了多个 `searchV2` 查询,每个查询都针对不同的搜索维度(type, language, level, length, with, publish, rating),并使用上面定义的片段 `FacetsData` 来获取每个维度的总数量和方面数据。

这个查询的主要目的是为搜索 "ChatGPT" 提供一个多维度的概览,包括不同类别(如类型、语言、难度级别等)的统计信息和选项。通过这种方式,用户可以了解每个维度下的课程分布情况,从而帮助他们进行更精确的搜索和选择。

找了两段不同的请求载荷,主要区别在于`variables`对象中的`after`字段的值不同。

两个请求载荷的共同点:

- `operationName`:两个请求都使用了相同的操作名称 `"GetClassesQuery"`。

- `variables`中的其他字段:`query`、`where`、`analyticsTags`、`first` 在两个请求中都是相同的。

- `query`:两个请求中的GraphQL查询字符串是相同的。

以下是两个请求载荷的不同点:

- `variables`中的`after`字段:

- 第一个请求的`after`字段值是 `"191"`。

- 第二个请求的`after`字段值是 `"167"`。

`after`字段通常用于分页,它指定了从哪个点开始获取数据。在这个GraphQL查询中,它决定了从搜索结果的哪一条记录开始返回数据。因此,第一个请求将从记录191开始获取数据,而第二个请求将从记录167开始获取数据。

这意味着两个请求将返回不同的数据集,即使它们都是基于相同的查询和过滤条件。第一个请求可能是为了获取第一页或后续某页的数据,而第二个请求可能是为了获取另一页的数据。其他字段如`first`指定了每页返回的记录数,在这种情况下,都是24条记录。

再继续查看其他请求载荷的after字段:-1、47、 71、95

搜索结果是205 个,显然`after`字段值是从-1开始,每次递增24,以215结束

在chatgpt中输入提示词:

你是一个Python专家,要完成一个编写爬虫的Python脚本,具体步骤:

请求网址:

https://www.skillshare.com/api/graphql

请求方法:

POST

状态代码:

200 OK

远程地址:

127.0.0.1:10809

引荐来源网址政策:

strict-origin-when-cross-origin

请求标头:

Accept:

*/*

Accept-Encoding:

gzip, deflate, br, zstd

Accept-Language:

zh-CN,zh;q=0.9,en;q=0.8

Content-Length:

1302

Content-Type:

application/json

Origin:

https://www.skillshare.com

Priority:

u=1, i

Referer:

https://www.skillshare.com/en/search/classes?query=ChatGPT

Sec-Ch-Ua:

"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"

Sec-Ch-Ua-Mobile:

?0

Sec-Ch-Ua-Platform:

"Windows"

Sec-Fetch-Dest:

empty

Sec-Fetch-Mode:

cors

Sec-Fetch-Site:

same-origin

User-Agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36

请求载荷:

{"operationName":"GetClassesQuery","variables":{"query":"ChatGPT","where":{"level":["ALL_LEVELS","BEGINNER","INTERMEDIATE","ADVANCED"]},"analyticsTags":["src:browser","src:browser:search","disc_cls_idx_mig","user-agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"],"after":"{pagenumber}","first":24},"query":"fragment ClassFields on Class {\n badges {\n type\n __typename\n }\n durationInSeconds\n id\n publishTime\n largeCoverUrl\n sku\n sourceLanguage\n studentCount\n teacher {\n id\n name\n username\n vanityUsername\n __typename\n }\n title\n url\n viewer {\n hasSavedClass\n __typename\n }\n __typename\n}\n\nquery GetClassesQuery($query: String!, $where: SearchFiltersV2!, $analyticsTags: [String!], $after: String!, $first: Int!, $sort: SortParameters) {\n search: searchV2(query: $query, where: $where, analyticsTags: $analyticsTags, after: $after, first: $first, sort: $sort) {\n totalCount\n searchId\n algorithmId\n pageInfo {\n startCursor\n endCursor\n hasNextPage\n hasPreviousPage\n __typename\n }\n edges {\n cursor\n node {\n ...ClassFields\n __typename\n }\n __typename\n }\n __typename\n }\n}\n"}

其中,"after"键对应的字段值"{pagenumber}"是从-1开始,每次递增24,以215结束。

获取网页响应的json数据,打印出来;

提取"data"键中嵌套的"search"键嵌套的"edges"键的内容;

"edges"键对应的值是一个json数据;

将这个json数据所有的键名作为Excel表格的表头,键对应的值作为Excel表格的列数据,全部写入Excel表格中;

保存Excel表格到文件夹“F:\AI自媒体内容\AI行业数据分析”,文件名为:skillshareChatgptcourse20240604.xlsx

注意:每一步信息都要输出到屏幕上

ChatGPT生成的Python源代码:

import requests

import json

import pandas as pd

# 请求网址和请求头

url = "https://www.skillshare.com/api/graphql"

headers = {

'Accept': '*/*',

'Accept-Encoding': 'gzip, deflate, br, zstd',

'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',

'Content-Length': '1302',

'Content-Type': 'application/json',

'Origin': 'https://www.skillshare.com',

'Priority': 'u=1, i',

'Referer': 'https://www.skillshare.com/en/search/classes?query=ChatGPT',

'Sec-Ch-Ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',

'Sec-Ch-Ua-Mobile': '?0',

'Sec-Ch-Ua-Platform': '"Windows"',

'Sec-Fetch-Dest': 'empty',

'Sec-Fetch-Mode': 'cors',

'Sec-Fetch-Site': 'same-origin',

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'

}

# 定义请求载荷的模板

payload_template = {

"operationName": "GetClassesQuery",

"variables": {

"query": "ChatGPT",

"where": {

"level": ["ALL_LEVELS", "BEGINNER", "INTERMEDIATE", "ADVANCED"]

},

"analyticsTags": [

"src:browser",

"src:browser:search",

"disc_cls_idx_mig",

"user-agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36"

],

"after": "",

"first": 24

},

"query": """

fragment ClassFields on Class {

badges {

type

__typename

}

durationInSeconds

id

publishTime

largeCoverUrl

sku

sourceLanguage

studentCount

teacher {

id

name

username

vanityUsername

__typename

}

title

url

viewer {

hasSavedClass

__typename

}

__typename

}

query GetClassesQuery($query: String!, $where: SearchFiltersV2!, $analyticsTags: [String!], $after: String!, $first: Int!, $sort: SortParameters) {

search: searchV2(query: $query, where: $where, analyticsTags: $analyticsTags, after: $after, first: $first, sort: $sort) {

totalCount

searchId

algorithmId

pageInfo {

startCursor

endCursor

hasNextPage

hasPreviousPage

__typename

}

edges {

cursor

node {

...ClassFields

__typename

}

__typename

}

__typename

}

}

"""

}

# 初始化数据列表

all_data = []

# 循环请求每一页的数据

for i in range(-1, 216, 24):

payload = payload_template.copy()

payload['variables']['after'] = str(i)

response = requests.post(url, headers=headers, json=payload)

if response.status_code == 200:

print(f"Page {i//24 + 1} data fetched successfully.")

data = response.json()

print(json.dumps(data, indent=2)) # 打印响应的JSON数据

# 提取我们需要的部分

edges = data.get('data', {}).get('search', {}).get('edges', [])

all_data.extend([edge['node'] for edge in edges])

else:

print(f"Failed to fetch page {i//24 + 1}. Status code: {response.status_code}")

break

# 将数据转换为DataFrame

df = pd.DataFrame(all_data)

print(df.head()) # 打印表格的前几行

# 保存DataFrame到Excel

output_path = "F:/AI自媒体内容/AI行业数据分析/skillshareChatgptcourse20240604.xlsx"

df.to_excel(output_path, index=False)

print(f"Data saved to {output_path}")

Vscode中运行程序,获取所有查询结果数据:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/22354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一篇文章讲透数据结构之树and二叉树

一.树 1.1树的定义 树是一种非线性的数据结构,它是有n个有限结点组成的一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根在上,叶在下的。 在树中有一个特殊的结点,称为根结点,根结点…

【玩转google云】在 Google Cloud 和 AWS 之间创建高可用性 VPN 连接(一)

目录 一、目标 二、架构:实现高可用性 VPN 连接 1、架构图 2、实现 99.99% 的服务可用性 SLA

免费工具扫描 Linux 中已知威胁

首发公众号网络研究观,关注获取更多。 卡巴斯基为 Linux 平台发布了一款名为 KVRT 的新病毒清除工具,允许用户免费扫描他们的系统并清除恶意软件和其他已知威胁。 尽管人们普遍误以为 Linux 系统本质上是安全的,不会受到威胁,但不…

AIGC工具汇总介绍

AIGC工具汇总介绍 一、引言 随着人工智能技术的飞速发展,AIGC(AI Generated Content)工具已经成为内容创作领域的重要力量。这些工具利用深度学习、自然语言处理、计算机视觉等AI技术,自动生成各种形式的数字内容,如…

如何使用Vuforia AR进行增强现实技术的开发?

前言 今天是坚持写博客的第17天,很高兴自己可以一直坚持下来。我们今天来讲讲怎么使用Vuforia AR进行增强现实的开发。 我们需要在今天的开发中用到Vuforia AR和2018版的Unity3d 什么是Vuforia AR Vuforia AR是基于实时计算摄影机影像的位置及角度,并…

掘金小册《前端性能优化原理与实践》读书笔记

前端性能优化: 以下文章内容是根据掘金小册《前端性能优化原理与实践》整理的 网络层面的优化 1、减少请求次数;2、减少单次请求花费的时间; webpack相关优化; 1、按需加载关键:require.ensure(dependencies, cal…

Kubernetes ingress

目录 一.ingress 1.ingress简介 2.实现外部应用能访问内部集群服务的方法 (1)NodePort: (2)LoadBalancer: (3)externalIPs: (4)ingress&am…

vue computed 计算属性

一、计算属性(computed) 1、说明 当一些数据需要根据其它数据变化时,需要进行处理才能去展示,虽然vue提供了绑定数据表达式绑定的方式,但是设计它的初衷只是用于简单运算的。在模板中放入太多的逻辑会让模板过重且难以维护,对于一些比较复杂和特殊的计算有可能就捉襟见肘了,而…

【会议征稿,ACM独立出版】第三届机器人、人工智能与信息工程国际学术会议(RAIIE 2024,7月05-07)

2024年第二届机器人、人工智能与信息工程国际学术会议(RAIIE 2024)将于2024年7月5-7日在新加坡举行。本次会议主要围绕“机器人”、“智能仿生”和“信息科学”的最新研究进展展开,会议汇聚了该领域内国际学者、专家、研究人员及相关从业人员…

274 基于matlab的随机粗糙表面对微气体轴承内气体压强分布的影响

基于matlab的随机粗糙表面对微气体轴承内气体压强分布的影响。采用差分法求解气体轴承的雷诺方程,通过尺寸参数、分形维数对粗糙度表面设置,滑流参数设置,实现气压分布可视化结果显示。程序已调通,可直接运行。 274 气体轴承 随机…

hnust 湖南科技大学 2022 软件测试报告+代码

hnust 湖南科技大学 2022 软件测试报告代码 内容 BMI junit单元测试决策表划分方法测试三角形判断问题文档修改问题之因果图实验逻辑覆盖测试技术实验(白盒测试)selenium 功能自动化测试Jmeter 性能自动化测试 下载地址 https://pan.baidu.com/s/19e…

基于websocket与node搭建简易聊天室

一、前言 上一篇文章介绍了websocket的详细用法与工具类的封装,本篇就基于websocket搭建一个简易实时的聊天室。 在本篇开始之前也可以去回顾一下websocket详细用法:WebSocket详解与封装工具类 二、基于node搭建后台websocket服务 首先确认本机电脑中…

c# 操作Microsoft Access数据库

数据库结构为: public static string connting "数据库路径:如:D:\\xxx.mdb";//插入public bool InsertToFile(string casenumber, int lastrowid, int pagecount){bool result true;try{string connString $"ProviderMicr…

在nodeJS 中实现langchain 的Agent (实验笔记)

在nodeJS 中实现langchain 的Agent 实验过程记录如下: 1 构建一个Agent ,使用两个工具 Calculator和TavilySearchResults 2 Tavily Search的API key 的获取 之前一直找不到一个合适的搜索引擎,Google Search 被墙,bing Search …

【Linux】进程(5):命令行参数

大家好,我是苏貝,本篇博客带大家了解Linux进程(5):命令行参数,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 (A)为什么要有命令…

iOS中的@objc和@objcMembers实现Swift和OC的交互

目录 ​​​​​​​前言 一、使用OC和Swift混编的场景 二、objcMembers 1.objcMembers 的用法和示例 1.基本用法 2.与objc 的区别 3.使用场景 1. 与Objective-C代码互操作 2.需要使用Objective-C运行时特性 3.避免重复的objc修饰符 4.注意事项 前言 这篇博客主要讨…

Paraformer解读(1)基于self-attention和dfsmn的encoder

DFSMN SAN-M python实现 import torch import torch.nn as nn import torch.nn.functional as Fclass PositionalEncoding(nn.Module):def __init__(self, d_model, dropout0.1, max_len5000):super(PositionalEncoding, self).__init__()self.dropout nn.Dropout(pdropout)p…

C语言中整形提升举例说明

一. 简介 前面一篇文章简单学习了 C语言中的整形提升。文章如下: C语言中的整型提升-CSDN博客 本文再举例说明 C语言随处可见的整型提升的代码示例。 二. C语言中整形提升举例说明 1. 什么是整形提升? C语言的表达式中的 字符型(即 c…

sklearn.pipeline的用法介绍

sklearn.pipeline可以将多个数据预处理步骤和机器学习模型组合,成一个整体,从而简化了机器学习的流程。 sklearn.pipeline类可以将多个算法模型串联起来,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流,主要带来两点好处: 1.…

你管这破玩意儿叫负载均衡?

你管这破玩意儿叫负载均衡? 那么四层负载均衡器是如何工作的呢总结 相信大家都听过这样的一道经典面试题:「请说出在淘宝网输入一个关键词到最终展示网页的整个流程,越详细越好」 这个问题很难,涉及到 HTTP,TCP,网关…