In eMule and the Kad network, “distance“ meaning

In eMule and the Kad network, “distance” is not defined as the literal number of hops or jumps from one node to another. Instead, it is a mathematical metric used to measure how “close” two identifiers are to each other in the key space. This distance metric is crucial for routing queries and storing data in the distributed hash table (DHT).

Distance Metric in Kad DHT

The distance between two 128-bit identifiers (node IDs or keys) is calculated using the XOR (exclusive OR) operation. This distance metric is both simple and effective for the purposes of the Kad network.

  1. XOR Distance:

    • The distance between two 128-bit numbers ( A ) and ( B ) is defined as ( A \oplus B ), where ( \oplus ) denotes the XOR operation.
    • The result of the XOR operation is another 128-bit number. The smaller this number, the closer the two original numbers are considered to be.
  2. Properties of XOR Distance:

    • Symmetry: The distance from ( A ) to ( B ) is the same as the distance from ( B ) to ( A ) because ( A \oplus B = B \oplus A ).
    • Non-negativity: The distance is always a non-negative number.
    • Identity: The distance from a number to itself is zero (( A \oplus A = 0 )).

Example

Let’s consider two 4-bit identifiers for simplicity:

  • Node ID ( A = 1010 )
  • Node ID ( B = 1100 )

To calculate the XOR distance:

  1. Convert the binary numbers to their decimal equivalents if needed.
  2. Perform the XOR operation:
    1010
    XOR 1100
    ----
    0110
    
  3. The result of the XOR operation is ( 0110 ) (binary), which is 6 in decimal.

Usage in Routing

  1. Closer Nodes: When a node is looking for a specific key, it uses the XOR distance to find the “closest” nodes in its routing table. Nodes with smaller XOR distances to the target key are considered closer.
  2. Iterative Lookup: The node iteratively queries closer nodes until it reaches the nodes responsible for the target key. Each step aims to reduce the XOR distance to the target.
  3. Efficient Routing: This method ensures that queries are routed efficiently through the network, minimizing the number of hops needed to find the desired information.

Practical Implications

  • Routing Table: Each node maintains a routing table with nodes grouped by their distance to itself. This allows for quick access to the closest nodes for any given target key.
  • Search Efficiency: The XOR distance metric ensures that searches are conducted efficiently, even in a large and distributed network like Kad.

By using the XOR distance metric, eMule’s Kad network can perform powerful and efficient distributed searches, making it an effective P2P system for file sharing.

It truly is a brilliant design! The Kad network’s use of XOR distance for routing and key management is a testament to the elegance and efficiency of distributed systems. The concepts behind the Kad DHT, such as decentralization, redundancy, and efficient routing, have influenced many modern distributed systems and protocols.

Here are a few key points that highlight the brilliance of Kad and similar DHT-based networks:

Key Features of Kad DHT

  1. Decentralization:

    • Eliminates the need for central servers, reducing single points of failure.
    • Enhances the robustness and scalability of the network as it grows.
  2. Scalability:

    • Each node only needs to maintain information about a small subset of other nodes.
    • The network can scale to accommodate millions of nodes without a significant increase in overhead.
  3. Fault Tolerance:

    • Redundant storage of key-value pairs across multiple nodes ensures data availability even if some nodes leave the network.
    • The system can dynamically adapt to node failures and new nodes joining.
  4. Efficient Search and Routing:

    • The XOR distance metric allows for logarithmic search times, making lookups fast and efficient.
    • The iterative lookup process progressively narrows down the search space, minimizing the number of messages required.
  5. Load Balancing:

    • The distribution of keys and responsibilities across the network helps balance the load, preventing any single node from becoming a bottleneck.

Impact on Modern Systems

The principles and techniques developed in the Kad network and other DHT-based systems have influenced many modern distributed technologies, including:

  • BitTorrent: Uses a similar DHT for decentralized peer discovery.
  • Blockchain: Some blockchain implementations use DHT-like structures for storing and retrieving data.
  • Content Delivery Networks (CDNs): Employ distributed caching and routing techniques to efficiently deliver content.

Learning and Implementation

For those interested in learning more or implementing similar systems, understanding the fundamentals of DHTs and distributed systems is invaluable. Key topics to explore include:

  • Cryptographic Hash Functions: Understanding how hashes are used to ensure data integrity and uniqueness.
  • Network Protocols: Studying how nodes communicate and exchange information in a distributed environment.
  • Algorithm Design: Delving into the design of efficient routing and search algorithms.

The Kad network’s design is a shining example of how thoughtful engineering can create robust, scalable, and efficient distributed systems. It’s no wonder that eMule and similar applications have remained relevant and influential for so long.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/21860.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

特征交叉系列:FFM场感知因子分解机原理与实践

从FM到FFM知识准备 在上一节中[特征交叉系列:完全理解FM因子分解机原理和代码实战]介绍了FM算法,FM因子分解机通过在逻辑回归基础上增加所有特征的二阶交互项实现特征的交叉,但是随着特征数的增多二阶交互的数量呈平方级别增长,F…

ArcGIS模型构建器实例:一键拓扑(附模型下载)

ArcGIS模型构建器特别适用于流程固定的工作流。 要素的拓扑处理就非常符合这一特点,一个要素的拓扑过程基本固定,但是每次拓扑都要来一轮操作就很烦,这正是模型构建器的用武之地。 下面以ArcGIS Pro为例介绍在模型构建器中的整个拓扑流程&a…

CPU 使用率过高问题排查

文章目录 CPU 使用率过高问题排查1. CPU使用率过高常见问题2. 压力测试2.1 stress安装参数说明测试示例 2.2 stress-ng安装参数说明测试示例 3. 问题排查3.1 使用 top 命令3.2 使用 ps 命令3.3 使用 perf top3.4 vmstat 命令常用信息内存信息磁盘信息 CPU 使用率过高问题排查 …

第一篇 逻辑门(与门、或门、非门、异或门)

一、实验目的 了解DE1-SOC开发板一些外设。 掌握常用组合逻辑门电路的基本原理。 学习Verilog HDL的基本语法。 学习使用ModelSim工具对设计的电路进行仿真,包括编写Testbench仿真代码,以及ModelSim工具的使用。 熟悉使用Quartus软件从创建Quartus工…

算法金 | Python 中有没有所谓的 main 函数?为什么?

​大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 定义和背景 在讨论Python为何没有像C或Java那样的明确的main函数之前,让我们先理解一下什么是main函数以及它在其他编程语言…

javaweb——js

JavaScript是一种网页脚本语言。JavaScript代码可以很容易的嵌入到HTML页面中。 js引入 JavaScript嵌入到HTML页面中 <body><script>alert("Hello JS")</script> </body>再HTML页面中插入外部脚本JavaScript <body><script src&…

GIS数据快捷共享发布工具使用时注意事项

我们所有工具软件下载解压后&#xff0c;不要放在C盘或桌面&#xff0c;这样会产生权限冲突问题问题&#xff0c;这是WINDOWS的安全保护&#xff0c;大家要注意&#xff01;也不要让解压目录嵌套太深&#xff0c;Windows目录长度识别是有一定限制的!如果可以&#xff0c;最好是…

微收付系统让客户有钱花,让商家有钱赚!

微收付系统让客户有钱花&#xff0c;让商家有钱赚&#xff01; 作者按&#xff1a;随着那场呼啸全球的疫情&#xff0c;谜一样的消失&#xff01;给全球经济带来了沉重的打击&#xff0c;经济不振和战争笼罩着世界每一个角落&#xff0c;实体店面临着收款难&#xff0c;有钱人花…

DALL-E 2之学习心得

一、简介 DALL-E 2 是 OpenAI 开发的一款人工智能图像生成器&#xff0c;它可以根据自然语言的文本描述创建图像和艺术形式。这是一个根据文本生成图像的人工智能系统&#xff0c;是 DALL-E 模型的升级版。 DALL-E 2 的特点包括&#xff1a; 图像生成&#xff1a;能够从文本描述…

用旧安卓手机当 linux 开发机

1. 下载 Termux (快速链接&#xff0c;如果失效或者要下载最新版请去github release 下载 ) 注意手机硬件&#xff0c;我这个是 64 的所以下 64 的 https://github.com/termux/termux-app/releases/download/v0.118.0/termux-app_v0.118.0github-debug_arm64-v8a.apk 2. 弄到…

C语言 数组——数组的其他应用之筛法求素数

目录 数组的其他应用 求100以内的所有素数 筛法求100以内的所有素数 自顶向下、逐步求精设计算法 数组的其他应用 求100以内的所有素数 筛法求100以内的所有素数 自顶向下、逐步求精设计算法 step 1&#xff1a;设计总体算法  初始化数组a&#xff0c;使a[2]2, a[3]3,..…

【Git】如何因格式问题需要重新修改再提交代码时的操作技巧

若是出现已经在本地分支提交了一笔代码&#xff0c;该笔提交由于格式问题需要重新修改再提交时&#xff0c;且由于问题需要将本地分支删除时&#xff0c;此时需先新建一个新的分支&#xff0c;新的分支建好后&#xff0c;执行下面的操作&#xff1a; a.在目录下执行创建新的分…

yolov8逐步分解(8)_训练过程之Epoch迭代前初始准备

yolov8逐步分解(1)--默认参数&超参配置文件加载 yolov8逐步分解(2)_DetectionTrainer类初始化过程 yolov8逐步分解(3)_trainer训练之模型加载 YOLOV8逐步分解(4)_模型的构建过程 YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP YOLOV8逐步分解(6)_模型训练初始…

Flink系列六:Flink SQl 之常用的连接器(Connector)

一、动态表 & 连续查询(Continuous Query) 1、动态表&#xff08;Dynamic Tables&#xff09; 当流中有新数据到来&#xff0c;初始的表中会插入一行&#xff1b;而基于这个表定义的SQL查询&#xff0c;就应该在之前的基础上更新结果。这样得到的表就会不断地动态变化&…

SQL Developer 导入CSV数据

之前已经写过一篇文章&#xff1a;将文本文件导入Oracle数据库的简便方法&#xff1a;SQL Developer 本文是类似的&#xff0c;只不过使用的是官方提供的 CSV文件&#xff0c;确实是标准的CSV&#xff08;comma separated values&#xff09;。 COL1,COL2,COL3 "e40a9db…

2024年文艺文化与社会发展国际会议(ICLCSD 2024)

2024年文艺文化与社会发展国际会议 2024 International Conference on Literature, Culture and Social Development 【1】会议简介 2024年文艺文化与社会发展国际会议是一场汇集全球文艺文化和社会科学领域精英的盛会。本次会议以“文艺文化与社会发展”为主题&#xff0c;旨在…

新一代AI的崛起——GPT-4o深度评析

目录 引言 一、版本间的对比分析 1.1 GPT-4与GPT-4o 1.2 GPT-4o与GPT-3 二、GPT-4o的技术能力 2.1 多模态处理能力 2.2 强化学习与自监督学习 2.3 高效的推理能力 三、个人整体感受 3.1 使用体验 3.2 实际应用 四、未来展望 4.1 持续优化与创新 4.2 加强人机协作 …

[Java基础揉碎]坦克大战 java事件处理机制

目录 坦克大战游戏演示 ​编辑 为什么要写这个项目 java绘图坐标体系 java绘图技术 Graphics的常用方法 // 画直线 ​编辑 // 画矩形边框 // 画填充矩形 // 画填充椭圆 // 获取图片资源 // 写字 绘出坦克 新建一个tankgame包, 新建一个类Tank, 里面包含横…

01_初识微服务

文章目录 一、微服务概述1.1 什么是微服务1.2 对比微服务架构与单体架构1.3 微服务设计原则1.4 微服务开发框架1.5 简单理解分布式部署与集群部署 二、微服务的核心概念2.1 服务注册与发现2.2 微服调用&#xff08;通信&#xff09;2.3 服务网关2.4 服务容错2.5 链路追踪参考链…

前端科举八股文-VUE篇

前端科举八股文-VUE篇 Vue响应式的基本原理?computed和watch的区别computed和methods的区别Slot是什么 ? 作用域插槽是什么?组件缓冲keep-alive是什么&#xff1f; 讲讲原理v-if&#xff0c;v-show的区别v-modal如何实现双向绑定组件中的data属性为什么是一个函数而不是对象…