【深度学习】温故而知新4-手写体识别-多层感知机+CNN网络-完整代码-可运行

多层感知机版本

import torch
import torch.nn as nn
import numpy as np
import torch.utils
from torch.utils.data import DataLoader, Dataset
import torchvision
from torchvision import transforms
import matplotlib.pyplot as plt
import matplotlib
import os
# 前置配置:
matplotlib.use('Agg')
class Config():base_dir = os.path.dirname(os.path.abspath(__file__))device = "cuda" if torch.cuda.is_available() else "cpu"# 超参配置: batch_size=128lr=0.0001
# 数据集初步加工
train_ds = torchvision.datasets.MNIST(os.path.join(Config.base_dir,"data"),train=True,download=False,transform=transforms.ToTensor())
test_ds = torchvision.datasets.MNIST(os.path.join(Config.base_dir,"data"),train=False,download=False,transform=transforms.ToTensor())
# 生成dataLoader
train_dl = DataLoader(train_ds,batch_size=Config.batch_size,shuffle=True)
test_dl = DataLoader(test_ds,batch_size=Config.batch_size)def show_pic_and_label():# 查看dataloaderprint(len(train_dl.dataset))# 查看 它的img 和 labelimgs, labels = next(iter(train_dl))# print(imgs, labels)sample_img = imgs[0:10]sample_label = labels[0:10]print(sample_img,sample_label)for idx,npimg in enumerate(sample_img,1):# plt.subplot()# 也可以挤一挤npimg = npimg.squeeze()# npimg = npimg.reshape(28,28)plt.subplot(1,10,idx)plt.imshow(npimg)plt.axis('off')plt.savefig(os.path.join(Config.base_dir,"1.jpg"))print(sample_label)
# 构建模型 
class Model(nn.Module):def __init__(self):super().__init__()# 第一层 28*28, 120self.liner1 = nn.Linear(28*28,120)# 第二层 输出84self.liner2 = nn.Linear(120, 84)# 第三层 输出10self.liner3 = nn.Linear(84,10)def forward(self, input):x = input.view(-1,28*28)# @todo 这里踩坑了,不是nn.ReLU, 而是torch.ReLux = torch.relu(self.liner1(x))x = torch.relu(self.liner2(x))x = self.liner3(x)return xmodel = Model().to(Config.device)
# print(model)
optim = torch.optim.Adam(model.parameters(), lr = Config.lr)loss_fn = nn.CrossEntropyLoss()def model_test():"""确认输入输出是没问题的。"""res = model(torch.randn(10,28*28).to(Config.device))print(res.shape)print(res)
def accuracy(y_pred,y_true):y_pred = (torch.argmax(y_pred,dim=1) == y_true).type(torch.int64)return y_pred.sum()
# 编写训练过程
def train(dataloader, model, loss_fn, optimizer):total_row_count = len(dataloader.dataset)total_batch_count = len(dataloader)total_acc = 0total_loss = 0for X,y in dataloader:X,y = X.to(Config.device),y.to(Config.device)y_pred = model(X)acc = accuracy(y_pred,y)loss = loss_fn(y_pred,y)optimizer.zero_grad()loss.backward()optimizer.step()with torch.no_grad():total_acc+=acctotal_loss+=losstotal_acc = total_acc/total_row_counttotal_loss = total_loss/total_batch_countreturn total_loss, total_acc# 编写测试过程
def test(dataloader, model, loss_fn):total_row_count = len(dataloader.dataset)total_batch_count = len(dataloader)total_acc = 0total_loss = 0with torch.no_grad():for X,y in dataloader:X,y = X.to(Config.device),y.to(Config.device)y_pred = model(X)acc = accuracy(y_pred,y)loss = loss_fn(y_pred,y)total_acc+=acctotal_loss+=losstotal_acc = total_acc/total_row_counttotal_loss = total_loss/total_batch_countreturn total_loss, total_accepochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):epoch_loss, epoch_acc = train(train_dl,model,loss_fn,optim)epoch_test_loss, epoch_test_acc = test(test_dl,model,loss_fn)template = "epoch:{:2d}, train_loss:{:.5f}, train_acc:{:.1f}%, test_loss:{:.5f},test_acc:{:.1f}%"print(template.format(epoch, epoch_loss.data.item(), epoch_acc.data.item()*100, epoch_test_loss.data.item(), epoch_test_acc.data.item()*100))#print(epoch, epoch_loss.data.item(),epoch_acc.data.item(),epoch_test_loss.data.item(),epoch_test_acc.data.item())
if __name__ == "__main__":# model_test()pass# y_pred = torch.tensor([#     [1,2,3],#     [2,1,3],#     [3,2,1],#     ])# y_true = torch.tensor([2,0,1])# res = accuracy(y_pred,y_true)# print(res)
(pytorchbook) (base) justin@justin-System-Product-Name:~/Desktop/code/python_project/mypaper$ /home/justin/miniconda3/envs/pytorchbook/bin/python /home/justin/Desktop/code/python_project/mypaper/pytorchbook/chapter4/手写体识别.py
epoch: 0, train_loss:1.17435, train_acc:70.1%, test_loss:0.47829,test_acc:88.7%
epoch: 1, train_loss:0.39913, train_acc:89.5%, test_loss:0.33029,test_acc:91.0%
epoch: 2, train_loss:0.31837, train_acc:91.1%, test_loss:0.28821,test_acc:91.8%
epoch: 3, train_loss:0.28331, train_acc:92.0%, test_loss:0.26157,test_acc:92.5%
epoch: 4, train_loss:0.26049, train_acc:92.5%, test_loss:0.24704,test_acc:93.1%
epoch: 5, train_loss:0.24122, train_acc:93.1%, test_loss:0.22766,test_acc:93.4%
epoch: 6, train_loss:0.22516, train_acc:93.6%, test_loss:0.21446,test_acc:93.7%
epoch: 7, train_loss:0.21048, train_acc:94.0%, test_loss:0.20211,test_acc:94.2%
epoch: 8, train_loss:0.19786, train_acc:94.4%, test_loss:0.19200,test_acc:94.5%
epoch: 9, train_loss:0.18692, train_acc:94.6%, test_loss:0.18458,test_acc:94.7%
epoch:10, train_loss:0.17689, train_acc:95.0%, test_loss:0.17440,test_acc:94.9%
epoch:11, train_loss:0.16766, train_acc:95.2%, test_loss:0.16584,test_acc:95.0%
epoch:12, train_loss:0.15932, train_acc:95.5%, test_loss:0.16011,test_acc:95.3%
epoch:13, train_loss:0.15149, train_acc:95.7%, test_loss:0.15269,test_acc:95.5%
epoch:14, train_loss:0.14443, train_acc:95.9%, test_loss:0.14685,test_acc:95.5%
epoch:15, train_loss:0.13801, train_acc:96.0%, test_loss:0.14179,test_acc:95.7%
epoch:16, train_loss:0.13172, train_acc:96.2%, test_loss:0.13724,test_acc:95.8%
epoch:17, train_loss:0.12594, train_acc:96.3%, test_loss:0.13256,test_acc:96.1%
epoch:18, train_loss:0.12016, train_acc:96.5%, test_loss:0.13012,test_acc:96.1%
epoch:19, train_loss:0.11557, train_acc:96.7%, test_loss:0.12416,test_acc:96.2%
epoch:20, train_loss:0.11037, train_acc:96.8%, test_loss:0.12220,test_acc:96.4%
epoch:21, train_loss:0.10601, train_acc:97.0%, test_loss:0.11851,test_acc:96.5%
epoch:22, train_loss:0.10160, train_acc:97.1%, test_loss:0.11445,test_acc:96.6%
epoch:23, train_loss:0.09774, train_acc:97.2%, test_loss:0.11242,test_acc:96.5%
epoch:24, train_loss:0.09388, train_acc:97.3%, test_loss:0.10876,test_acc:96.6%
epoch:25, train_loss:0.09008, train_acc:97.4%, test_loss:0.10713,test_acc:96.7%
epoch:26, train_loss:0.08692, train_acc:97.5%, test_loss:0.10526,test_acc:96.7%
epoch:27, train_loss:0.08370, train_acc:97.6%, test_loss:0.10490,test_acc:96.8%
epoch:28, train_loss:0.08067, train_acc:97.7%, test_loss:0.10183,test_acc:96.8%
epoch:29, train_loss:0.07805, train_acc:97.7%, test_loss:0.10172,test_acc:96.9%
epoch:30, train_loss:0.07480, train_acc:97.8%, test_loss:0.09779,test_acc:97.0%
epoch:31, train_loss:0.07235, train_acc:97.8%, test_loss:0.09650,test_acc:97.0%
epoch:32, train_loss:0.06958, train_acc:98.0%, test_loss:0.09472,test_acc:97.1%
epoch:33, train_loss:0.06747, train_acc:98.0%, test_loss:0.09349,test_acc:97.1%
epoch:34, train_loss:0.06504, train_acc:98.1%, test_loss:0.09270,test_acc:97.1%
epoch:35, train_loss:0.06236, train_acc:98.2%, test_loss:0.09221,test_acc:97.2%
epoch:36, train_loss:0.06039, train_acc:98.3%, test_loss:0.09187,test_acc:97.2%
epoch:37, train_loss:0.05850, train_acc:98.3%, test_loss:0.08917,test_acc:97.3%
epoch:38, train_loss:0.05624, train_acc:98.4%, test_loss:0.08657,test_acc:97.3%
epoch:39, train_loss:0.05456, train_acc:98.4%, test_loss:0.08722,test_acc:97.4%
epoch:40, train_loss:0.05246, train_acc:98.5%, test_loss:0.08660,test_acc:97.4%
epoch:41, train_loss:0.05088, train_acc:98.5%, test_loss:0.08511,test_acc:97.4%
epoch:42, train_loss:0.04919, train_acc:98.6%, test_loss:0.08628,test_acc:97.4%
epoch:43, train_loss:0.04726, train_acc:98.7%, test_loss:0.08620,test_acc:97.4%
epoch:44, train_loss:0.04571, train_acc:98.7%, test_loss:0.08298,test_acc:97.5%
epoch:45, train_loss:0.04408, train_acc:98.8%, test_loss:0.08309,test_acc:97.5%
epoch:46, train_loss:0.04274, train_acc:98.8%, test_loss:0.08241,test_acc:97.5%
epoch:47, train_loss:0.04122, train_acc:98.9%, test_loss:0.08229,test_acc:97.6%
epoch:48, train_loss:0.03967, train_acc:98.9%, test_loss:0.08120,test_acc:97.6%
epoch:49, train_loss:0.03829, train_acc:99.0%, test_loss:0.08134,test_acc:97.5%

问题1:
epoch: 0, train_loss:1.17435, train_acc:70.1%, test_loss:0.47829,test_acc:88.7%
为什么第一轮训练train_acc要比test_acc掉点不少,是因为第一轮,是刚开始,train按批次比完了,才会到test。因此test是高
那么为什么其它轮,又是test比train低呢?
因为即使train是按批次的,但仍然有可能过拟合,契合的好。所以test是比不过的。

在这里插入图片描述
在这里插入图片描述

CNN版本

只需要将model换一下,其它的毛也不需要动

class Model(nn.Module):def __init__(self) -> None:super().__init__()self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) # 1X28X28 --> 6X24X24 # 池化 6X12X12self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5) # 6X12X12--> 16X8X8# 池化 16X4X4 self.liner_1 = nn.Linear(16*4*4,256)self.liner_2 = nn.Linear(256,10)def forward(self,input):x = torch.max_pool2d(torch.relu(self.conv1(input)),2)x = torch.max_pool2d(torch.relu(self.conv2(x)),2)# 展平层x = x.view(-1, 16*4*4)x = torch.relu(self.liner_1(x))x = self.liner_2(x)return x# 这里是在学习一种调试的方式
class _Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 6, 5)self.conv2 = nn.Conv2d(6, 16, 5)def forward(self, input):a1 = self.conv1(input)a2 = F.max_pool2d(a1,2)a3 = self.conv2(a2)a4 = F.max_pool2d(a3,2)# print()
epoch: 0, train_loss:1.13144, train_acc:74.3%, test_loss:0.36698,test_acc:90.6%
epoch: 1, train_loss:0.30213, train_acc:91.6%, test_loss:0.22672,test_acc:93.5%
epoch: 2, train_loss:0.21874, train_acc:93.7%, test_loss:0.17848,test_acc:94.9%
epoch: 3, train_loss:0.17849, train_acc:94.8%, test_loss:0.14941,test_acc:95.4%
epoch: 4, train_loss:0.15203, train_acc:95.5%, test_loss:0.12645,test_acc:96.2%
epoch: 5, train_loss:0.13339, train_acc:96.1%, test_loss:0.11351,test_acc:96.5%
epoch: 6, train_loss:0.11952, train_acc:96.5%, test_loss:0.09954,test_acc:96.9%
epoch: 7, train_loss:0.10876, train_acc:96.7%, test_loss:0.09198,test_acc:97.3%
epoch: 8, train_loss:0.09943, train_acc:97.1%, test_loss:0.08412,test_acc:97.3%
epoch: 9, train_loss:0.09255, train_acc:97.2%, test_loss:0.07788,test_acc:97.6%
epoch:10, train_loss:0.08576, train_acc:97.4%, test_loss:0.07551,test_acc:97.6%
epoch:11, train_loss:0.08089, train_acc:97.5%, test_loss:0.06757,test_acc:97.9%
epoch:12, train_loss:0.07635, train_acc:97.7%, test_loss:0.06399,test_acc:98.0%
epoch:13, train_loss:0.07175, train_acc:97.8%, test_loss:0.05942,test_acc:98.1%
epoch:14, train_loss:0.06862, train_acc:97.9%, test_loss:0.05657,test_acc:98.2%
epoch:15, train_loss:0.06509, train_acc:98.0%, test_loss:0.05776,test_acc:98.1%
epoch:16, train_loss:0.06273, train_acc:98.1%, test_loss:0.05381,test_acc:98.3%
epoch:17, train_loss:0.05940, train_acc:98.2%, test_loss:0.05134,test_acc:98.4%
epoch:18, train_loss:0.05681, train_acc:98.3%, test_loss:0.05330,test_acc:98.2%
epoch:19, train_loss:0.05434, train_acc:98.4%, test_loss:0.04689,test_acc:98.6%
epoch:20, train_loss:0.05175, train_acc:98.5%, test_loss:0.04500,test_acc:98.6%
epoch:21, train_loss:0.05027, train_acc:98.6%, test_loss:0.04645,test_acc:98.5%
epoch:22, train_loss:0.04849, train_acc:98.6%, test_loss:0.04274,test_acc:98.7%
epoch:23, train_loss:0.04600, train_acc:98.6%, test_loss:0.04739,test_acc:98.5%
epoch:24, train_loss:0.04449, train_acc:98.7%, test_loss:0.04360,test_acc:98.7%
epoch:25, train_loss:0.04359, train_acc:98.7%, test_loss:0.04198,test_acc:98.7%
epoch:26, train_loss:0.04115, train_acc:98.8%, test_loss:0.04209,test_acc:98.7%
epoch:27, train_loss:0.03978, train_acc:98.8%, test_loss:0.04147,test_acc:98.7%
epoch:28, train_loss:0.03866, train_acc:98.9%, test_loss:0.03845,test_acc:98.8%
epoch:29, train_loss:0.03721, train_acc:98.9%, test_loss:0.04142,test_acc:98.7%
epoch:30, train_loss:0.03632, train_acc:98.9%, test_loss:0.03916,test_acc:98.8%
epoch:31, train_loss:0.03525, train_acc:98.9%, test_loss:0.04137,test_acc:98.7%
epoch:32, train_loss:0.03364, train_acc:99.0%, test_loss:0.03829,test_acc:98.8%
epoch:33, train_loss:0.03323, train_acc:99.0%, test_loss:0.04090,test_acc:98.7%
epoch:34, train_loss:0.03179, train_acc:99.0%, test_loss:0.03660,test_acc:98.9%
epoch:35, train_loss:0.03125, train_acc:99.1%, test_loss:0.03698,test_acc:98.9%
epoch:36, train_loss:0.03009, train_acc:99.1%, test_loss:0.03624,test_acc:98.8%
epoch:37, train_loss:0.02958, train_acc:99.1%, test_loss:0.03525,test_acc:98.9%
epoch:38, train_loss:0.02902, train_acc:99.1%, test_loss:0.03705,test_acc:98.9%
epoch:39, train_loss:0.02789, train_acc:99.2%, test_loss:0.03579,test_acc:98.9%
epoch:40, train_loss:0.02741, train_acc:99.2%, test_loss:0.03896,test_acc:98.9%
epoch:41, train_loss:0.02604, train_acc:99.2%, test_loss:0.03572,test_acc:98.9%
epoch:42, train_loss:0.02518, train_acc:99.2%, test_loss:0.03741,test_acc:98.7%
epoch:43, train_loss:0.02471, train_acc:99.3%, test_loss:0.03319,test_acc:98.9%
epoch:44, train_loss:0.02413, train_acc:99.3%, test_loss:0.03753,test_acc:98.8%
epoch:45, train_loss:0.02340, train_acc:99.3%, test_loss:0.03333,test_acc:98.9%
epoch:46, train_loss:0.02272, train_acc:99.3%, test_loss:0.03303,test_acc:99.0%
epoch:47, train_loss:0.02188, train_acc:99.3%, test_loss:0.03451,test_acc:98.9%
epoch:48, train_loss:0.02169, train_acc:99.4%, test_loss:0.03433,test_acc:98.9%
epoch:49, train_loss:0.02068, train_acc:99.4%, test_loss:0.03331,test_acc:98.9%

对比一下 cnn的到了98.9,而mlp的只有97.x

函数式API的调用方式

import torch.nn.functional as F
# 这里是在学习一种调试的方式
class _Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 6, 5)self.conv2 = nn.Conv2d(6, 16, 5)def forward(self, input):a1 = self.conv1(input)a2 = F.max_pool2d(a1,2)a3 = self.conv2(a2)a4 = F.max_pool2d(a3,2)# print()class Model1(nn.Module):def __init__(self) -> None:super().__init__()self.conv1 = nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5) # 1X28X28 --> 6X24X24 # 池化 6X12X12self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5) # 6X12X12--> 16X8X8# 池化 16X4X4 self.liner_1 = nn.Linear(16*4*4,256)self.liner_2 = nn.Linear(256,10)def forward(self,input):x = F.max_pool2d(F.relu(self.conv1(input)),2)x = F.max_pool2d(F.relu(self.conv2(x)),2)# 展平层x = x.view(-1, 16*4*4)x = F.relu(self.liner_1(x))x = self.liner_2(x)return x   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/21729.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

wvp-gb28181-pro搭建流媒体服务器,内存占用过高问题

直接给出解决办法,端口暴露的太多了,暴露了500个端口导致从3g---->11g 遇到的问题,直接使用镜像《648540858/wvp_pro:latest》在宿主机上运行,如我下面的博客 https://blog.csdn.net/weixin_41012767/article/details/137112338?spm100…

FASTGPT:可视化开发、运营和使用的AI原生应用

近年来,随着人工智能(AI)技术的迅猛发展,AI的应用逐渐渗透到各行各业。作为一种全新的开发模式,AI原生应用正逐步成为行业的焦点。在这方面,FASTGPT无疑是一款颇具代表性的产品。本文将详细介绍FASTGPT的设…

面向对象编程高级概念详解

面向对象编程(Object-Oriented Programming, OOP)不仅是一种编程范式,更是一种思考和设计软件的方法。本文将深入探讨OOP中的几个核心概念,包括析构函数、深浅拷贝、静态成员、单例模式、操作符重载、友元以及前与后的区别&#x…

Appium自动化环境搭建保姆级教程

APP自动化测试运行环境比较复杂,稍微不注意安装就会失败。我见过不少朋友,装了1个星期,Appium 的运行环境还没有搭好的。 搭建环境本身不是一个有难度的工作,但是 Appium 安装过程中确实存在不少隐藏的比较深的坑,如果…

用友NC pagesServlet SQL注入致RCE漏洞复现(XVE-2024-13067)

0x01 产品简介 用友NC是由用友公司开发的一套面向大型企业和集团型企业的管理软件产品系列。这一系列产品基于全球最新的互联网技术、云计算技术和移动应用技术,旨在帮助企业创新管理模式、引领商业变革。 0x02 漏洞概述 用友NC /portal/pt/servlet/pagesServlet/doPost接口…

操作系统入门系列-MIT6.828(操作系统工程)学习笔记(三)---- xv6初探与实验一(Lab: Xv6 and Unix utilities)

系列文章目录 操作系统入门系列-MIT6.S081(操作系统)学习笔记(一)---- 操作系统介绍与接口示例 操作系统入门系列-MIT6.828(操作系统工程)学习笔记(二)----课程实验环境搭建&#x…

SM国密加密算法简介

国密(商密)算法算法类型是否公开技术特点应用场景SM1对称密码算法否,需要加密芯片的接口进行调用加密强度与AES相当电子政务/商务,智能IC卡、加密卡等SM2非对称密码算法是基于ECC,签名速度与密钥生成速度快于RSA&#…

Vue3 全屏组件 源码

在Vue 3中&#xff0c;实现了全屏功能的组件&#xff0c;开箱即用。 使用了screenfull依赖库&#xff0c;可以省去浏览器适配的麻烦。 代码如下&#xff1a; <template><div ref"myFullScreen" ><slot></slot></div> </template…

ResizeObserver监听画布尺寸改变动态渲染echarts

前言&#xff1a; 在日常开发中有时遇到同数据相关的业务可能会用到echarts插件。一般在封装echarts组件的时候大家可能都会通过windows对象监听浏览器窗口大小的改变动态渲染echarts,这样当echarts窗口改变导致echarts画布元素大小改变的同时&#xff0c;就能调用相关api进行重…

RocketMQ相关知识知多少

一、RocketMQ的定义 官网网址&#xff1a;领域模型概述 | RocketMQ Apache RocketMQ 自诞生以来&#xff0c;因其架构简单、业务功能丰富、具备极强可扩展性等特点被众多企业开发者以及云厂商广泛采用。历经十余年的大规模场景打磨&#xff0c;RocketMQ 已经成为业内共识的金…

Flink的简单学习二

一 Flink的核心组件 1.1 client 1.将数据流程图DataFlow发送给JobManager。 1.2 JobManager 1.收集client的DataFlow图&#xff0c;将图分解成一个个的task任务&#xff0c;并返回状态更新数据给client 2.JobManager负责作业调度&#xff0c;收集TaskManager的Heartbeat和…

方法调研:DDOS检测有哪些方法?

检测DDoS攻击的方法多种多样,主要可以归纳为以下几类:流量分析、行为分析、协议分析、分布式检测和基于机器学习的方法。每种方法都有其独特的优势和适用场景。以下是这些方法的详细介绍: 1. 流量分析 基线分析 原理:建立正常流量的基线,通过比较当前流量与基线的偏差来…

【Java】--SpringBoot 统一异常处理

目录 统一异常处理 统一异常处理 通过使用注解ControllerAdvice&#xff08;控制器通知类&#xff09;ExceptionHandler&#xff08;异常处理器&#xff09;来实现&#xff0c;两个结合表示出现异常的时候执行某个通知&#xff0c;即执行某个方法事件。 对应的异常类执行对应…

三、基于图像分类预训练编码及图神经网络的预测模型 【框图+源码】

背景&#xff1a; 抽时间补充&#xff0c;先挖个坑。 一、模型结构 二、源码

美团一面:什么是CAS?有什么优缺点?我说你说的是AtomicInteger吗?

引言 传统的并发控制手段&#xff0c;如使用synchronized关键字或者ReentrantLock等互斥锁机制&#xff0c;虽然能够有效防止资源的竞争冲突&#xff0c;但也可能带来额外的性能开销&#xff0c;如上下文切换、锁竞争导致的线程阻塞等。而此时就出现了一种乐观锁的策略&#x…

解析Java中1000个常用类:ProcessHandle.Info类,你学会了吗?

效率工具 推荐一个程序员常用的工具网站:程序员常用工具(http://tools.cxyroad.com),有时间戳、JSON格式化、文本对比、HASH生成、UUID生成等常用工具,效率加倍嘎嘎好用。云服务器 云服务器限时免费领:轻量服务器2核4G腾讯云:2核2G4M云服务器新老同享99元/年,续费同价阿…

企业数字化转型的测度难题:基于大语言模型的新方法与新发现

《经济研究》新文章《企业数字化转型的测度难题&#xff1a;基于大语言模型的新方法与新发现》运用机器学习和大语言模型构造一套新的企业数字化转型指标。理论分析和数据交叉验证均表明&#xff0c;构建的指标相对已有方法更准确&#xff1a; 1.第一步&#xff1a;选择“管理…

17.Redis之主从复制

1.主从复制是怎么回事&#xff1f; 分布式系统, 涉及到一个非常关键的问题: 单点问题 单点问题&#xff1a;如果某个服务器程序, 只有一个节点(只搞一个物理服务器, 来部署这个服务器程序) 1.可用性问题,如果这个机器挂了,意味着服务就中断了~ 2.性能/支持的并发量也是比较有限…

【HarmonyOS】鸿蒙系统中应用权限等级介绍、定义、申请授权讲解

【HarmonyOS】鸿蒙系统中应用权限等级介绍、定义、申请授权讲解 针对权限等级&#xff0c;相对于主体来说&#xff0c;会有不同的细分概念。 一、权限APL等级&#xff1a; 首先在鸿蒙系统中&#xff0c;对于权限本身&#xff0c;分为三个等级&#xff1a;normal&#xff0c;s…

(9)svelte 教程: Event Modifiers

&#xff08;9&#xff09;svelte 教程&#xff1a; Event Modifiers 什么是 Event Modifiers Event Modifiers 是 Svelte 框架中的一种特性&#xff0c;它允许你在绑定事件处理函数时&#xff0c;添加一些修饰符来修改事件的默认行为或事件流。通过这些修饰符&#xff0c;可…