YOLOv8 segment介绍

      1.YOLOv8图像分割支持的数据格式:

      (1).用于训练YOLOv8分割模型的数据集标签格式如下:

      1).每幅图像对应一个文本文件:数据集中的每幅图像都有一个与图像文件同名的对应文本文件,扩展名为".txt";

      2).文本文件中每个目标(object)占一行:文本文件中的每一行对应图像中的一个目标实例;

      3).每行目标信息:如下所示:之间用空格分隔

      A.目标类别索引:整数,例如:0代表person,1代表car,等等;

      B.目标边界坐标:mask区域周围的边界坐标,归一化为[0, 1];

<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>

      :每行的长度不必相等;每个分隔label必须至少有3对xy点

      (2).数据集YAML格式:Ultralytics框架使用YAML文件格式来定义用于训练分隔模型的数据集和模型配置,如下面测试数据集melon中melon_seg.yaml内容如下: 在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集

path: ../datasets/melon_seg # dataset root dir
train: images/train # train images (relative to 'path')
val: images/val  # val images (relative to 'path')
test: # test images (optional)# Classes
names:0: watermelon1: wintermelon

      2.使用半自动标注工具 EISeg 对数据集melon进行标注:

      (1).从 PaddleSeg 中下载"通用场景的图像标注"高精度模型static_hrnet18_ocr64_cocolvis.zip;

      (2).标注前先按照下面操作设置好:

      1).选中JSON保存,取消COCO保存;

      2).选中自动保存;

      3).取消灰度保存.

      3.编写Python脚本将EISeg生成的json文件转换成YOLOv8 segment支持的txt文件:

import os
import json
import argparse
import colorama
import random
import shutil
import cv2# supported image formats
img_formats = (".bmp", ".jpeg", ".jpg", ".png", ".webp")def parse_args():parser = argparse.ArgumentParser(description="json(EISeg) to txt(YOLOv8)")parser.add_argument("--dir", required=True, type=str, help="images directory, all json files are in the label directory, and generated txt files are also in the label directory")parser.add_argument("--labels", required=True, type=str, help="txt file that hold indexes and labels, one label per line, for example: face 0")parser.add_argument("--val_size", default=0.2, type=float, help="the proportion of the validation set to the overall dataset:[0., 0.5]")parser.add_argument("--name", required=True, type=str, help="the name of the dataset")args = parser.parse_args()return argsdef get_labels_index(name):labels = {} # key,valuewith open(name, "r") as file:for line in file:# print("line:", line)key_value = []for v in line.split(" "):# print("v:", v)key_value.append(v.replace("\n", "")) # remove line breaks(\n) at the end of the lineif len(key_value) != 2:print(colorama.Fore.RED + "Error: each line should have only two values(key value):", len(key_value))continuelabels[key_value[0]] = key_value[1]with open(name, "r") as file:line_num = len(file.readlines())if line_num != len(labels):print(colorama.Fore.RED + "Error: there may be duplicate lables:", line_num, len(labels))return labelsdef get_json_files(dir):jsons = []for x in os.listdir(dir+"/label"):if x.endswith(".json"):jsons.append(x)return jsonsdef parse_json(name_json, name_image):img = cv2.imread(name_image)if img is None:print(colorama.Fore.RED + "Error: unable to load image:", name_image)raiseheight, width = img.shape[:2]with open(name_json, "r") as file:data = json.load(file)objects=[]for i in range(0, len(data)):object = []object.append(data[i]["name"])object.append(data[i]["points"])objects.append(object)return width, height, objectsdef write_to_txt(name_json, width, height, objects, labels):name_txt = name_json[:-len(".json")] + ".txt"# print("name txt:", name_txt)with open(name_txt, "w") as file:for obj in objects: # 0: name; 1: pointsif len(obj[1]) < 3:print(colorama.Fore.RED + "Error: must be at least 3 pairs:", len(obj[1]), name_json)raiseif obj[0] not in labels:print(colorama.Fore.RED + "Error: unsupported label:", obj[0], labels)raisestring = ""for pt in obj[1]:string = string + " " + str(round(pt[0] / width, 6)) + " " + str(round(pt[1] / height, 6))string = labels[obj[0]] + string + "\r"file.write(string)def json_to_txt(dir, jsons, labels):for json in jsons:name_json = dir + "/label/" + jsonname_image = ""for format in img_formats:file = dir + "/" + json[:-len(".json")] + formatif os.path.isfile(file):name_image = filebreakif not name_image:print(colorama.Fore.RED + "Error: required image does not exist:", json[:-len(".json")])raise# print("name image:", name_image)width, height, objects = parse_json(name_json, name_image)# print(f"width: {width}; height: {height}; objects: {objects}")write_to_txt(name_json, width, height, objects, labels)def get_random_sequence(length, val_size):numbers = list(range(0, length))val_sequence = random.sample(numbers, int(length*val_size))# print("val_sequence:", val_sequence)train_sequence = [x for x in numbers if x not in val_sequence]# print("train_sequence:", train_sequence)return train_sequence, val_sequencedef get_files_number(dir):count = 0for file in os.listdir(dir):if os.path.isfile(os.path.join(dir, file)):count += 1return countdef split_train_val(dir, jsons, name, val_size):if val_size > 0.5 or val_size < 0.01:print(colorama.Fore.RED + "Error: the interval for val_size should be:[0.01, 0.5]:", val_size)raisedst_dir_images_train = "datasets/" + name + "/images/train"dst_dir_images_val = "datasets/" + name + "/images/val"dst_dir_labels_train = "datasets/" + name + "/labels/train"dst_dir_labels_val = "datasets/" + name + "/labels/val"try:os.makedirs(dst_dir_images_train) #, exist_ok=Trueos.makedirs(dst_dir_images_val)os.makedirs(dst_dir_labels_train)os.makedirs(dst_dir_labels_val)except OSError as e:print(colorama.Fore.RED + "Error: cannot create directory:", e.strerror)raise# print("jsons:", jsons)train_sequence, val_sequence = get_random_sequence(len(jsons), val_size)for index in train_sequence:for format in img_formats:file = dir + "/" + jsons[index][:-len(".json")] + format# print("file:", file)if os.path.isfile(file):shutil.copy(file, dst_dir_images_train)breakfile = dir + "/label/" + jsons[index][:-len(".json")] + ".txt"if os.path.isfile(file):shutil.copy(file, dst_dir_labels_train)for index in val_sequence:for format in img_formats:file = dir + "/" + jsons[index][:-len(".json")] + formatif os.path.isfile(file):shutil.copy(file, dst_dir_images_val)breakfile = dir + "/label/" + jsons[index][:-len(".json")] + ".txt"if os.path.isfile(file):shutil.copy(file, dst_dir_labels_val)num_images_train = get_files_number(dst_dir_images_train)num_images_val = get_files_number(dst_dir_images_val)num_labels_train = get_files_number(dst_dir_labels_train)num_labels_val = get_files_number(dst_dir_labels_val)if  num_images_train + num_images_val != len(jsons) or num_labels_train + num_labels_val != len(jsons):print(colorama.Fore.RED + "Error: the number of files is inconsistent:", num_images_train, num_images_val, num_labels_train, num_labels_val, len(jsons))raisedef generate_yaml_file(labels, name):path = os.path.join("datasets", name, name+".yaml")# print("path:", path)with open(path, "w") as file:file.write("path: ../datasets/%s # dataset root dir\n" % name)file.write("train: images/train # train images (relative to 'path')\n")file.write("val: images/val  # val images (relative to 'path')\n")file.write("test: # test images (optional)\n\n")file.write("# Classes\n")file.write("names:\n")for key, value in labels.items():# print(f"key: {key}; value: {value}")file.write("  %d: %s\n" % (int(value), key))if __name__ == "__main__":colorama.init()args = parse_args()# 1. parse JSON file and write it to a TXT filelabels = get_labels_index(args.labels)# print("labels:", labels)jsons = get_json_files(args.dir)# print(f"jsons: {jsons}; number: {len(jsons)}")json_to_txt(args.dir, jsons, labels)# 2. split the datasetsplit_train_val(args.dir, jsons, args.name, args.val_size)# 3. generate a YAML filegenerate_yaml_file(labels, args.name)print(colorama.Fore.GREEN + "====== execution completed ======")

      以上脚本包含3个功能:

      1).将json文件转换成txt文件;

      2).将数据集随机拆分成训练集和测试集;

      3).产生需要的yaml文件

      4.编写Python脚本进行train:

import argparse
import colorama
from ultralytics import YOLOdef parse_args():parser = argparse.ArgumentParser(description="YOLOv8 train")parser.add_argument("--yaml", required=True, type=str, help="yaml file")parser.add_argument("--epochs", required=True, type=int, help="number of training")parser.add_argument("--task", required=True, type=str, choices=["detect", "segment"], help="specify what kind of task")args = parser.parse_args()return argsdef train(task, yaml, epochs):if task == "detect":model = YOLO("yolov8n.pt") # load a pretrained modelelif task == "segment":model = YOLO("yolov8n-seg.pt") # load a pretrained modelelse:print(colorama.Fore.RED + "Error: unsupported task:", task)raiseresults = model.train(data=yaml, epochs=epochs, imgsz=640) # train the modelmetrics = model.val() # It'll automatically evaluate the data you trained, no arguments needed, dataset and settings rememberedmodel.export(format="onnx") #, dynamic=True) # export the model, cannot specify dynamic=True, opencv does not support# model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)model.export(format="torchscript") # libtorchif __name__ == "__main__":colorama.init()args = parse_args()train(args.task, args.yaml, args.epochs)print(colorama.Fore.GREEN + "====== execution completed ======")

      执行结果如下图所示:会生成best.pt、best.onnx、best.torchscript

      5.生成的best.onnx使用Netron进行可视化,结果如下图所示:

      说明

      1).输入:images: float32[1,3,640,640] :与YOLOv8 detect一致,大小为3通道640*640

      2).输出:包括2层,output0和output1

      A.output0: float32[1,38,8400] :

      a.8400:模型预测的所有box的数量,与YOLOv8 detect一致;

      b.38: 每个框给出38个值:4:xc, yc, width, height;2:class, confidences;32:mask weights

      B.output1: float32[1,32,160,160] :最终mask大小是160*160;output1中的masks实际上只是原型masks,并不代表最终masks。为了得到某个box的最终mask,你可以将每个mask与其对应的mask weight相乘,然后将所有这些乘积相加。此外,你可以在box上应用NMS,以获得具有特定置信度阈值的box子集

      6.编写Python脚本实现predict:

import colorama
import argparse
from ultralytics import YOLO
import osdef parse_args():parser = argparse.ArgumentParser(description="YOLOv8 predict")parser.add_argument("--model", required=True, type=str, help="model file")parser.add_argument("--dir_images", required=True, type=str, help="directory of test images")parser.add_argument("--dir_result", required=True, type=str, help="directory where the image results are saved")args = parser.parse_args()return argsdef get_images(dir):# supported image formatsimg_formats = (".bmp", ".jpeg", ".jpg", ".png", ".webp")images = []for file in os.listdir(dir):if os.path.isfile(os.path.join(dir, file)):# print(file)_, extension = os.path.splitext(file)for format in img_formats:if format == extension.lower():images.append(file)breakreturn imagesdef predict(model, dir_images, dir_result):model = YOLO(model) # load an modelmodel.info() # display model informationimages = get_images(dir_images)# print("images:", images)os.makedirs(dir_result) #, exist_ok=True)for image in images:results = model.predict(dir_images+"/"+image)for result in results:# print(result)result.save(dir_result+"/"+image)if __name__ == "__main__":colorama.init()args = parse_args()predict(args.model, args.dir_images, args.dir_result)print(colorama.Fore.GREEN + "====== execution completed ======")

      执行结果如下图所示:

      其中一幅图像的分割结果如下图所示:以下是epochs设置为100时生成的best.pt的结果

      GitHub:https://github.com/fengbingchun/NN_Test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/20636.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iReport的下载与安装

下载官网&#xff1a;Home - Jaspersoft Community 网盘下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1Oy5opY4GxPZ_mllTlBZ-2w 提取码&#xff1a;75do 安装就是双击后一直点击下一步 安装好了之后要配置jdk环境 iReport 目前 并不支持 高版本jdk 只支持…

TQSDRPI开发板教程:UDP收发测试

项目资源分享 链接&#xff1a;https://pan.baidu.com/s/1gWNSA9czrGwUYJXdeuOwgQ 提取码&#xff1a;tfo0 LWIP自环教程&#xff1a;https://blog.csdn.net/mcupro/article/details/139350727?spm1001.2014.3001.5501 在lwip自环的基础上修改代码实现UDP的收发测试。新建一…

嫁接打印:经济与实用的完美结合

在制造领域&#xff0c;寻求经济且好用的技术方案至关重要。而在模具制造中&#xff0c;3D 打印随形水路在提升冷却效率和产品良率方面的卓越表现已得到广泛认同。如何更经济的应用3D打印技术&#xff0c;就不得不说嫁接打印了。 在嫁接打印的制造过程中&#xff0c;产品的一部…

音视频开发—H264 SPS 和 PPS 参数说明

文章目录 序列参数集 (SPS, Sequence Parameter Set)SPS的主要内容&#xff1a; 图像参数集 (PPS, Picture Parameter Set)PPS的主要内容&#xff1a; Slice Header 结构 在H.264视频编码标准中&#xff0c;SPS和PPS是关键的参数集&#xff0c;它们提供了解码所需的各种配置信息…

Pytorch创建张量

文章目录 1.torch.from_numpy()2. torch.zeros()3. torch.ones()4. torch.arange()5. torch.linspace()6. torch.logspace()7. torch.eye()8. torch.empty()9. torch.full()10. torch.complex()10. torch.rand()10. torch.randint()11. torch.randn12. torch.normal()13. torch…

[数据集][目标检测]剪刀石头布检测数据集VOC+YOLO格式1973张3类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;1973 标注数量(xml文件个数)&#xff1a;1973 标注数量(txt文件个数)&#xff1a;1973 标注…

Docker 简介和安装

目录 Docker 是什么 跟普通虚拟机的对比 打包、分发、部署 Docker 部署的优势 Docker 通常用来做什么 重要概念&#xff1a;镜像、容器 安装 镜像加速源 Docker 是什么 Docker 是一个应用打包、分发、部署的工具 你也可以把它理解为一个轻量的虚拟机&#xff0c;它只虚…

SAP揭秘者- SAP PP模块日常常见运维问题之工单入库失败原因分析及快速处理

文章摘要&#xff1a; 无论您是负责SAP实施项目还是负责SAP运维项目&#xff0c;当用户发现有SAP PP模块的各种异常问题的时都需要作为SAP PP顾问的您快速地理解用户提交的问题&#xff0c;并快速地解决这些问题&#xff0c; 上篇文章跟大家聊了基本单位维护错了怎么修改的解决…

ARC学习(2)基本编程模型认识(二)

笔者继续来学习一下arc的编程模型的寄存器信息。 1、core寄存器深入 参数寄存器&#xff1a;r0-r7&#xff0c;8个参数&#xff0c;暂存器&#xff1a;r10-r15保存寄存器&#xff1a;r16-r25 调用函数需要保存的寄存器指针寄存器&#xff1a;gp&#xff08;全局指针&#xff09…

functional函数对象库学习

类模板 std::function 是一种通用多态函数包装器。std::function 的实例能存储、复制及调用任何可复制构造 (CopyConstructible) 的可调用 (Callable) 目标——函数&#xff08;通过其指针&#xff09;、lambda 表达式、bind 表达式或其他函数对象&#xff0c;以及成员函数指针…

FPGA基于DE2-115开发板驱动HC_SR04超声波测距模块|集成蜂鸣器,led和vga提示功能

文章目录 前言一、实验原理二、Verilog文件2.1 时钟分频2.2 超声波测距2.3 超声波驱动 三、实现过程3.1 模块说明3.2 引脚分配 三、演示视频总结参考 前言 环境 硬件 DE2-115 HC-SR04超声波传感器 软件 Quartus 18.1 目标结果 使用DE2-115开发板驱动HC-SR04模块&#xff0…

Windows 下 PostgreSQL 图形化界面安装、配置详解

相信大家对PostgreSQL都不陌生吧&#xff0c;自从MySQL被Oracle所控制后&#xff0c;PostgreSQL就成为了国内去O的首选数据库了&#xff0c;并且PostgreSQL目前不受任何商业公司控制&#xff0c;所以国内很多厂商都是基于PostgreSQL做二次开发来实现数据库自主可控的目标(国内很…

简单模拟实现shell(Linux)

目录​​​​​​​ 前言 展示效果 实现代码 前言 该代码模拟了shell的实现&#xff0c;也就是解析类似于“ls -a -l"的命令&#xff0c;当我们启动我们自己写的shell的可执行程序时&#xff0c;我们输入"ls"的命令&#xff0c;也可以展示出在shell中输入&…

学习笔记——网络参考模型——TCP/IP模型(物理层)

一、TCP/IP模型-物理层 1、数据传输(交换)的形式 (1)电路交换 特点&#xff1a;通信双方独占通信链路。 优点&#xff1a;数据传输时延小&#xff0c;适用于实时通信&#xff1b;数据按序发送&#xff0c;不存在失序问题&#xff1b;适合模拟信号和数字信号传输。 缺点&am…

【前缀和】42. 接雨水

本文涉及知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 LeetCode42. 接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&am…

IDEA+MyBatisX根据mapper方法自动添加注解和生成xml方法结构

前提&#xff1a;确保IDEA已安装并启用了MyBatisX插件 在service层写dao或mapper的方法结构&#xff0c;反向生成dao层方法声明&#xff0c;如下&#xff1a; void updateStock(Long skuId, Long wareId, Integer skuNum); 由于该方法传递多个参数&#xff0c;为了让MyBatis识…

心链6----开发主页以及后端数据插入(多线程并发)定时任务

心链 — 伙伴匹配系统 开发主页 信息搜索页修改 主页开发&#xff08;直接list用户&#xff09; 在后端controller层编写接口去实现显示推荐页面的功能 /*** 推荐页面* param request* return*/GetMapping("/recommend")public BaseResponse<List<User>&…

Go-知识并发控制WaitGroup

Go-知识并发控制WaitGroup 1. 认识 WaitGroup2. 基本原理2.1 信号量2.2 数据结构2.3 Add2.4 Wait2.5 Done 3. 小例子3.1 主协程等待子协程执行完成3.2 子协程等待主协程信号3.3 GetFirst 4. 总结 gitio: https://a18792721831.github.io/ 1. 认识 WaitGroup WaitGroup 是Go 应…

公网IP地址如何查询?

公网IP地址是指在互联网中可以被全球范围内的设备访问的IP地址。在网络通信中&#xff0c;公网IP地址扮演着重要的角色&#xff0c;它可以标识设备在互联网中的位置。查询公网IP地址是一种常见的网络管理需求&#xff0c;因为它能够提供网络设备的准确位置信息&#xff0c;方便…

AI 绘画爆火背后:扩散模型原理及实现

节前&#xff0c;我们星球组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、参加社招和校招面试的同学。 针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 合集&#x…