基于tensorflow和NasNet的皮肤癌分类项目

数据来源

https://challenge.isic-archive.com/data/#2019

数据划分

写了个脚本划分

for line in open('ISIC/labels.csv').readlines()[1:]:split_line = line.split(',')img_file = split_line[0]benign_malign = split_line[1]# 0.8 for train, 0.1 for test, 0.1 for validationrandom_num = random.random()if random_num < 0.8:location = traintrain_examples += 1elif random_num < 0.9:location = validationvalidation_examples += 1else:location = testtest_examples += 1if int(float(benign_malign)) == 0:shutil.copy('ISIC/images/' + img_file + '.jpg',location + 'benign/' + img_file + '.jpg')elif int(float(benign_malign)) == 1:shutil.copy('ISIC/images/' + img_file + '.jpg',location + 'malignant/' + img_file + '.jpg')print(f'Number of training examples {train_examples}')
print(f'Number of test examples {test_examples}')
print(f'Number of validation examples {validation_examples}')

数据生成模块

train_datagen = ImageDataGenerator(rescale=1.0 / 255,rotation_range=15,zoom_range=(0.95, 0.95),horizontal_flip=True,vertical_flip=True,data_format='channels_last',dtype=tf.float32,
)train_gen = train_datagen.flow_from_directory('data/train/',target_size=(img_height, img_width),batch_size=batch_size,color_mode='rgb',class_mode='binary',shuffle=True,seed=123,
)

 模型加载和运行

由于数据量较大,本次使用NasNet, 来源于nasnet | Kaggle

# NasNet
model = keras.Sequential([hub.KerasLayer(r'C:\\Users\\32573\\Desktop\\tools\py\\cancer_classification_project\\saved_model',trainable=True),layers.Dense(1, activation='sigmoid'),
])
model.compile(optimizer=keras.optimizers.Adam(3e-4),loss=[keras.losses.BinaryCrossentropy(from_logits=False)],metrics=['accuracy']
)model.fit(train_gen,epochs=1,steps_per_epoch=train_examples // batch_size,validation_data=validation_gen,validation_steps=validation_examples // batch_size,
)

运行结果 

 模型其他评估指标

METRICS = [keras.metrics.BinaryAccuracy(name='accuracy'),keras.metrics.Precision(name='precision'),keras.metrics.Recall(name='Recall'),keras.metrics.AUC(name='AUC'),
]

 绘制roc图

def plot_roc(label, data):predictions = model.predict(data)fp, tp, _ = roc_curve(label, predictions)plt.plot(100*fp, 100*tp)plt.xlabel('False Positives [%]')plt.ylabel('True Positives [%]')plt.show()test_labels = np.array([])
num_batches = 0for _, y in test_gen:test_labels = np.append(test_labels, y)num_batches = 1if num_batches == math.ceil(test_examples / batch_size):breakplot_roc(test_labels, test_gen)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/20049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快蜗牛OZON数据分析,OZON快蜗牛数据

在当今电商行业蓬勃发展的背景下&#xff0c;OZON作为俄罗斯及东欧市场的重要电商平台&#xff0c;其数据背后蕴藏着巨大的商业价值。快蜗牛&#xff0c;作为专注于OZON平台的数据分析工具&#xff0c;为卖家提供了深入的市场洞察和策略指导。接下来看看快蜗牛OZON数据分析&…

线上 | OpenSergo - [规范]

INDEX 1 参考资料2 OpenSergo 与 Sentinel 关系3 规范体系3.1 服务元数据ReportMetadataRequest 信息![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ffba569841ae4668b4cff74e4d41d21f.png)##### ReportMetadataReply 信息![在这里插入图片描述](https://img-blog…

BurpSuite2024.5

1 工具介绍 本版本更新介绍 此版本引入了Burp Scanner对WebSockets的支持、对记录登录编辑器的改进、WebSocket 匹配和替换规则以及许多性能改进。 Burp Scanner 支持 WebSockets 我们已更新内部代理的配置以允许 WebSocket 流量。这使 Burp Scanner 现在可以抓取依赖 WebSo…

基于大模型的智慧零售教育科研平台——技术方案

一、概述 1.1背景 随着数字经济的快速发展和全社会数字化水平的升级&#xff0c;人工智能的积极作用越来越凸显&#xff0c;人工智能与各个行业的深度融合已成为促进传统产业转型升级的重要方式之一。ChatGPT的出现掀起了又一波人工智能发展热潮&#xff0c;人工智能行业发展势…

Linux sudo用户权限管理小实验001

Linux sudo用户权限管理和审计-初步 1、设置历史指令的保存数量 默认history指令可以查看当前用户执行的1000条历史命令的条目 2、使用export指令设置HISTSIZE环境变量的数量为999999条。 3、基于date指令&#xff0c;输出日期和时间 4、设置linux系统history相关变量&…

预编码算法(个人总结)

引言 预编码算法是现代无线通信系统中的关键技术&#xff0c;特别是在多输入多输出&#xff08;MIMO&#xff09;系统中。它们通过在发送端对信号进行处理&#xff0c;减少干扰并提高信道容量。这种技术广泛应用于5G、Wi-Fi和卫星通信系统中。本教程将详细介绍预编码算法的背景…

FV悬浮球,安卓真正小而美的神器,满足你的一切需求。

如果你问安卓最强软件有哪些&#xff0c;不同的人可能会有不同的答案&#xff0c;但如果是问我&#xff0c;那我的答案中一定会有他。 FV悬浮球 他是ES文件浏览器&#xff0c;原作者的新作品&#xff0c;经过几年的开发&#xff0c;拥有了超过400项功能&#xff0c;但大小只有…

如何在 llama.cpp 服务器中实现用户登录功能的优化方案?(语言-c++)

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

HCIP-Datacom-ARST自选题库__BGP/MPLS IP VPN判断【10道题】

1.部署BGP/MPLSIP VPN时,当两个VPN有共同的站点,则该共同站点一定不能与两个VPN其他站点使用重叠的地址空间。 2.如图所示&#xff0c;运营商BGP/MPLSIP VPN骨干网通过LDP构建LSP&#xff0c;若想实现用户X两个站点之间通过BGP/MPLSIP VPN网络互通&#xff0c;则PE1和PE2之间必…

ZL-LGF-2离体心脏灌流系统适用于离体哺乳动物心脏灌流和离体心脏冠脉流量的测定

单介绍&#xff1a; 离体心脏灌流系统适用于离体哺乳动物心脏灌流&#xff08;langendorff氏法&#xff09;和离体心脏冠脉流量的测定&#xff0e;可直接进行恒压灌流&#xff0c;加上蠕动泵可进行恒流灌流&#xff0e; 详情介绍&#xff1a; 1、灌流数量&#xff1a;2个心脏…

10款实用软件工具推荐,从绘图到系统优化一应俱全!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 1.绘图软件——Adobe Fresco Adobe Fresco是由Adobe公司推出的一款绘图软件&#xff0c;适用于Windows平台。Adobe Fresco是一款功能强大的绘…

tinyrenderer-切线空间法线贴图

法线贴图 法线贴图分两种&#xff0c;一种是模型空间中的&#xff0c;一种是切线空间中的 模型空间中的法线贴图的rgb代表着每个渲染像素法线的xyz&#xff0c;与顶点坐标处于一个空间&#xff0c;图片是五颜六色的。 切线空间中的法线贴图的rgb同样对应xyz&#xff0c;是切线…

微信公众号开发(三):自动回复“你好”

上一篇做了服务器校验&#xff0c;但没有处理用户发来的消息&#xff0c;为了完成自动回复的功能&#xff0c;需要增加一些功能&#xff1a; 1、调整服务器校验函数&#xff1a; def verify_wechat(request):tokentokendatarequest.argssignaturedata.get(signature)timestamp…

如何让数据标注

1.用Anacoda创建一个新的虚拟环境 2.进入虚拟环境 conda activate stu_data&#xff08;就是刚才创建的虚拟变量的名称&#xff09; 3.在此环境中安装labelimg pip install labelimg 4.进入labelimg 直接输入 labelimg 快捷键&#xff1a;D&#xff1a;下一个图片 A&#xff1a…

apexcharts数据可视化之圆环柱状图

apexcharts数据可视化之圆环柱状图 有完整配套的Python后端代码。 本教程主要会介绍如下图形绘制方式&#xff1a; 基础圆环柱状图多组数据圆环柱状图图片背景自定义角度渐变半个圆环图虚线圆环图 基础圆环图 import ApexChart from react-apexcharts;export function Cir…

【工具免费】喜马拉雅 x2m转m4a,xm转mp3的简单方法!

喜马拉雅.xm文件转MP3&#xff0c;阿星来帮忙了&#xff01; 大家好&#xff0c;今天咱们来聊聊一个超级实用的小技巧&#xff0c;特别是对于那些喜马拉雅的忠实听众来说&#xff0c;这绝对是个福音&#xff01; 阿星发现&#xff0c;很多小伙伴们下载的喜马拉雅文件都是.xm格…

[深度学习]yolov10+bytetrack+pyqt5实现目标追踪

【简介】 利用YOLOv10、ByteTrack和PyQt5实现目标追踪是一个强大的组合&#xff0c;可以为用户提供一个交互式的实时目标追踪界面。以下是一个简化版的实现思路描述&#xff1a; 首先&#xff0c;YOLOv10是一个先进的目标检测算法&#xff0c;能够准确识别视频或图像中的目标…

CS61C | lecture2

# CS61C | lecture2 C 语言是一种编译语言。C 编译器将 C 程序映射到特定与体系结构的机器代码(实际上是一串 0 和 1)。 而 Java 会通过 JVM(Java 虚拟机) 将代码转换为独立于架构的字节码。 Python 则会直接解释代码。C 不会直接解释代码&#xff0c;而是将其编译成机器代码之…

ollama入门系列教程简介与目录

教程简介 Ollama教程系列是为那些希望深入了解并掌握Ollama框架的开发者设计的。通过这一系列的教程,用户将学习如何从基础设置到高级功能的各个方面,有效地在Ollama平台上开发和部署大型语言模型。本系列包括如何将模型导入Ollama框架、利用与OpenAI兼容的API、以及如何使用…