信息学奥赛初赛天天练-17-阅读理解-浮点数精准输出与海伦公式的巧妙应用

PDF文档公众号回复关键字:20240531
在这里插入图片描述
1 2023 CSP-J 阅读程序1

阅读程序(程序输入不超过数组成字符串定义的范围:判断题正确填√,错误填×;除特殊说明外,判断题1.5分,选择题3分,共计40分)

源代码

#include<iostream>
#include<cmath>
using namespace std;double f(double a,double b,double c){double s=(a+b+c)/2;return sqrt(s*(s-a)*(s-b)*(s-c));
}int main(){cout.flags(ios::fixed);cout.precision(4);int a,b,c;cin>>a>>b>>c;cout<<f(a,b,c)<<endl;return 0;
}

假设输入的所有数都为不超过1000的正整数,完成下面的判断题和单选题:

判断题

16 (2分)当输入为“2 2 2”时,输出为“1.7321”( )

17 (2分)将第7行中的"(s-b)* (s-c)“改为”(s-c)*(s-b)"不会影响程序运行的结果( )

18 (2分)程序总是输出四位小数( )

答案 T

单选题

19 (3分)当输入为“3 4 5”时,输出为( )

A “6.0000” B “12.0000” C “24.0000” D “30.0000”

20(3分)当输入为“5 12 13”时,输出为( )

A “24.0000” B “30.0000” C “60.0000” D “120.0000”

2 相关知识点

1) 浮点数输出

C++ cout 浮点数输出

在C++中,使用std::cout输出浮点数时,默认情况下,浮点数会以六位有效数字的形式打印。

如果需要更改浮点数的输出格式,可以使用iomanip库中的一些函数,如std::fixedstd::setprecision

std::fixed用于强制以固定点表示法(小数点表示法)输出浮点数。

std::setprecision用于设置小数点后的精度,它接收一个参数表示精度的位数。

示例1 -默认输出-位数不固定

#include<bits/stdc++.h>
using namespace std;
/*cout直接输出浮点数,系统会选择合适的位数 
*/ 
int main() {double d1=31.41;cout<<d1<<endl;//输出2位 double d2=31.256; cout<<d2<<endl;//输出3位double d3=31.2561; cout<<d3<<endl;//输出4位double d4=31.25616; cout<<d4<<endl;//输出4位,舍去1位 ,具体小数后位数和整数部分也有关系return 0;
}

示例2 - 固定点表示 -fixed-固定小数点位数

#include<bits/stdc++.h>
using namespace std;
/*cout直接输出浮点数,输出固定小数位数fixed 用于强制以固定点表示法(小数点表示法)输出浮点数setprecision(2) 指定小数点后保留2位 
*/ 
int main(){double num = 3.14159265;cout<<num<<endl;//输出默认精度 3.14159cout<<fixed<<setprecision(2)<<num<<endl;//指定固定输出2位小数 cout<<fixed<<setprecision(4)<<num<<endl;//指定固定输出4位小数 cout<<fixed<<setprecision(6)<<num<<endl;//指定固定输出6位小数 return 0;
}

2) 海伦公式

海伦公式古希腊数学家海伦建立的用三角形三边的长度求面积的公式

三角形3边长分别为 a,b,c

半周长 p=(a+b+c)/2

三角形面积 S=sqrt(p * (p-a) * (p-b) * (p-c))

3 思路分析

假设输入的所有数都为不超过1000的正整数,完成下面的判断题和单选题:

判断题

16 (2分)当输入为“2 2 2”时,输出为“1.7321”( )

答案 T

分析

海伦公式计算三角形面积

半周长 p=(2+2+2)/2=3

面积 S=sqrt((3 * (3-2) * (3-2) * (3-2)))=sqrt(3)=1.7321

17 (2分)将第7行中的"(s-b)* (s-c)“改为”(s-c)*(s-b)"不会影响程序运行的结果( )

答案 T

分析

乘法交换律,结果不变

18 (2分)程序总是输出四位小数( )

答案 T

分析

固定点输出法,设置输出保留4为小数,所以程序总是输出4位小数

单选题

19 (3分)当输入为“3 4 5”时,输出为( )

A “6.0000” B “12.0000” C “24.0000” D “30.0000”

答案 A

分析

模拟计算

半周长 p=(3+4+5)/2=6

面积 S=sqrt((6 * (6-3) * (6-4) * (6-5)))=sqrt(36)=6

20(3分)当输入为“5 12 13”时,输出为( )

A “24.0000” B “30.0000” C “60.0000” D “120.0000”

答案 B

分析

模拟计算

半周长 p=(5+12+13)/2=15

面积 S=sqrt((15 * (15-5) * (15-12) * (15-13)))=sqrt(900)=30

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/19705.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT-界面居中管理

问题&#xff1a;为什么不能对checkbox直接居中&#xff0c;LineEdit可以 复选框是一个固定大小的控件&#xff0c;不适合填满整个单元格&#xff0c;而相比之下QLineEdit是一个可变大小的控件 关于居中&#xff1a; lineEdit&#xff1a;lineEdit -> setAlignment(QT::Al…

C51单片机开发--库函数

知不足而奋进 望远山而前行 目录 系列文章目录 文章目录 前言 目标 内容 开发过程回顾 使用库函数点灯 什么是库函数? 面向库函数和面向寄存器开发 使用delay模块延时 总结 前言 在嵌入式系统开发中&#xff0c;使用库函数是提高开发效率、简化编程的重要手段之一…

Codeforces Round 949 (Div. 2) (A~C)

1981A - Turtle and Piggy Are Playing a Game 贪心&#xff0c;每次取x 2&#xff0c;求最大分数 // Problem: B. Turtle and an Infinite Sequence // Contest: Codeforces - Codeforces Round 949 (Div. 2) // URL: https://codeforces.com/contest/1981/problem/B // Me…

在Ubuntu上安装NVIDIA显卡驱动的方法

在Ubuntu上安装NVIDIA显卡驱动的方法如下&#xff1a; 打开终端&#xff08;快捷键&#xff1a;CtrlAltT&#xff09;。 更新系统软件包列表&#xff1a; sudo apt update安装nvidia-detect工具&#xff0c;用于检测系统中的NVIDIA显卡型号&#xff1a; sudo apt install n…

使用CS抓取WIN2012明文密码

目录 实验概述&#xff1a; 开始实验&#xff1a; 实验准备&#xff1a; 打开CS&#xff1a; 生成木马控制wind2012&#xff1a; 抓取明文密码&#xff1a; 实验概述&#xff1a; win2012及win10版本是不允许将明文密码储存在内存中的&#xff0c;此时我们…

【模型架构】学习RNN、LSTM、TextCNN和Transformer以及PyTorch代码实现

一、前言 在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;模型架构的不断发展极大地推动了技术的进步。从早期的循环神经网络&#xff08;RNN&#xff09;到长短期记忆网络&#xff08;LSTM&#xff09;、Transformer再到当下火热的Mamba&#xff08;放在下一节&a…

线性回归:波士顿房价

波士顿房价简述 波士顿房价问题是一个经典的机器学习问题&#xff0c;用于预测波士顿地区房屋的中位数价格。该问题涉及的数据集包含了506个样本&#xff0c;每个样本有13个特征指标&#xff0c;这些特征涵盖了城镇的各种社会经济和地理因素。以下是这些特征指标的简要描述&am…

高并发项目-分布式Session解决方案

分布式Session解决方案 1.保存Session&#xff0c;进入商品列表页面 1.保存Session 1.编写工具类 1.MD5Util.java package com.sxs.seckill.utils;import org.apache.commons.codec.digest.DigestUtils;/*** Description: MD5加密工具类** Author sun* Create 2024/5/5 14…

安卓手机在开发者模式下 打开wifi调试功能的相关 adb 命令

文章目录 Intro前置条件确认好处 Intro 部分安卓手机的开发者模式中&#xff0c;只提供了 USB调试模式&#xff0c;却没有明显的 wifi调试模式的相关菜单。 前置条件 手机已经打开开发者模式已经安装好Android Studio&#xff0c;或者已经配置了adb工具的所在路径到了环境变…

云原生架构相关技术_1.容器技术

1.容器技术的背景与价值 容器作为标准化软件单元&#xff0c;它将应用及其所有依赖项打包&#xff0c;使应用不再受环境限制&#xff0c;在不同计算环境间快速、可靠地运行。容器部署模式与其他模式的比较如下图1所示。 图1 传统、虚拟化、容器部署模式比较 Docker容器基于操作…

在RT-Thread下为MPU手搓以太网MAC驱动-4

文章目录 MAC驱动里面对MDIO的支持MAC驱动与MDIO总线 这是个人驱动开发过程中做的一些记录&#xff0c;仅代表个人意见和理解&#xff0c;不喜勿喷 MAC驱动需要支持不同的PHY芯片 MAC驱动里面对MDIO的支持 在第一篇文章中提到对MAC设备做出了抽象&#xff0c;其中MAC抽象里面有…

形式参数和实际参数

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在调用函数时&#xff0c;大多数情况下&#xff0c;主调函数和被调用函数之间有数据传递关系&#xff0c;这就是有参数的函数形式。函数参数的作用是…

前端面试题日常练-day43 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备&#xff0c;答案在文末 1. 在Bootstrap中&#xff0c;以下哪个类用于创建一个具有响应式的栅格系统&#xff1f; a) .row b) .grid-system c) .container d) .responsive-grid 2. 哪个Bootstrap类用于创建一个具有圆角边框…

android-handlerThread

记住一点Handler是子线程到主线程&#xff0c;HandlerThread是主线程到子线程通信 一、HandlerThread简介 HandlerThread是一个轻量级的异步类&#xff0c;可以实现多线程&#xff0c;并且可以实现线程间的通信&#xff08;HandlerThread主要应用是实现主线程到子线程的通信&…

用于日常任务的实用 Python 脚本

Python 是一种多功能编程语言&#xff0c;以其简单易读而闻名。它广泛应用于从 Web 开发到数据分析等各个领域。Python 脚本&#xff0c;它们可以通过自动执行常见任务来使您的生活更轻松。 用于日常任务的实用 Python 脚本 1. 使用 Pandas 进行数据分析2. 使用 BeautifulSoup …

服务器怎么被远程桌面连接不上,远程桌面连接不上服务器的问题有效解决方案

远程桌面连接不上服务器是一个极其严重的问题&#xff0c;它可能直接影响到我们的工作效率、数据安全&#xff0c;甚至是整个业务运营的顺畅。因此&#xff0c;这个问题必须得到迅速且有效的解决。 当我们尝试远程桌面连接服务器时&#xff0c;可能会遇到连接不上的情况。这其中…

MFC:初步理解序列化与反序列化(含代码实现)

序列化与反序列化是MFC将对象数据以二进制数据流的形式进行存储和读取的机制&#xff0c;读、写的效率很高。通过序列化与反序列化&#xff0c;可以将程序中对象在内存中数据保存到文件 (磁盘) 或者从文件 (磁盘) 中读取到内存以恢复对象数据&#xff0c;从而实现程序对数据的持…

RxSwift - 实现一个MVVM架构的TableView

文章目录 RxSwift - 实现一个MVVM架构的TableView前沿MVVM架构的Tableview目录结构1、模型&#xff08;Model&#xff09;2、视图模型&#xff08;ViewModel&#xff09;3、视图&#xff08;View&#xff09; 界面效果 RxSwift - 实现一个MVVM架构的TableView 前沿 MVVM架构在…

分享一个实用的MySQL一键巡检脚本

今日分享一个实用的MySQL一键巡检脚本&#xff0c;脚本内容还不是很完善&#xff0c;后续会继续进行优化。大家可以先在测试环境执行&#xff0c;确认执行没问题后可以在生产环境进行操作&#xff0c;问题的可以私信我。 MySQL一键巡检脚本的作用主要是帮助数据库管理员快速且…

redux状态管理用法详解

在React中使用redux&#xff0c;官方要求安装俩个其他插件 - Redux Toolkit 和 react-redux 1.ReduxToolkit (RTK) 官方推荐编写 Redux 逻辑的方式&#xff0c;是一套工具的集合集&#xff0c;简化书写方式 简化 store 的配置方式&#xff1b; 内置 immer 支持…