【图像处理与机器视觉】图像处理概述与像素

什么是数字图像处理

改善图像信息,便于作出解释
方便对图像传输,储存,方便机器理解

什么是数字图像

(1)模拟图像:连续二维函数 f(x,y)表示,其中 x,y 是平面坐标,f 代表图像在某点的某种性质的数值
(2)数字图像:对模拟图像red:离散化的结果
r 表示图形的行,c 表示图像的列,I 表示离散后的 f,可以用矩阵或者数组来描述数字图像
像素:数字图像的元素

数字图像处理的任务

(1)图像获取
(2)图像预处理
(3)图像滤波与增强
(4)图像复原
(5)彩色图像处理
(6)图像压缩
(7)图像分割
(8)图像描述与识别

机器视觉

用机器来模拟视觉,使用算法对于采集到的图像进行分析处理,并做出合适决策
计算机视觉侧重于对于理论的研究,而机器视觉侧重于对于实际场景的使用,强调算法的重要性
一个完整的机器视觉系统包括:
(1)光学系统
(2)图像采集模块
(3)图像处理系统
(4)交互界面
光学系统:通常包括光源,相机和镜头,突出被拍摄物体的特征,方便后期处理
图像采集模块:使用图像采集卡,将来自相机的模拟信号或者数字信号转为图像数据流
图像处理系统:通过视觉处理软件对于图像进行多种运算,并对得到的特征进行检测,定位,测量等处理
交互界面:显示最终的结果

工业应用中机器视觉的特点

(1)综合技术
(2)实用性
(3)实时性

处理基础

图像感知与获取

通过传感器将输入能源变为电压,再进行数字化处理

图像取样与量化

大多数传感器的输出是连续电压波形,为了产生图像,需要把连续的模拟信号转为离散的数字信号
取样:图像空间坐标的数字化
量化:对于图像函数值 f的数字化
数字图像只是对于真实场景的近似,取样点越多,量化的灰度级越多,图像质量越好
对于表示模拟图像的函数 f ( s , t ) f(s,t) f(s,t),通过采样和量化,转化为 M 行 N 列,离散灰度级数为 L 的数字图像,其中 M、N 必须为正整数,灰度级数 L = 2 k L=2^k L=2k,等间隔
(1)灰度跨越的值域为动态范围: 图像中最大可度量灰度 图像中最小可检测灰度 \frac{图像中最大可度量灰度}{图像中最小可检测灰度} 图像中最小可检测灰度图像中最大可度量灰度
(2)可度量灰度的上限取决于饱和度,超过了饱和度的灰度级将被剪切掉;下限取决于噪声,因为噪声掩盖了可检测的最低真实灰度级
(3)对比度:图像中最高的灰度级与最低的灰度级之间的灰度差
L = 2 k L=2^k L=2k,储存数字图像所需要的 bit 数为: M ∗ N ∗ k M*N*k MNk
E.G.对于 32*32 的二值图像(黑白两种元素的图像)
k=1,则其大小为: 3 2 2 ∗ 1 = 1024 b i t s = 256 b y t e s 32^2*1=1024bits=256bytes 3221=1024bits=256bytes

空间分辨率

图像的空间分辨率代表着对于图像中可辨别的最小单位的度量,由采样方式确定:
(1)视觉任务:像素尺寸
(2)平面设计:DPI(dots per Inch)

灰度分辨率

灰度分辨率则是指在灰度级中可以分辨的最小变化,灰度分辨率越大,图像的细节区分度就越好
在这里插入图片描述

图像中灰度级变小会如何:图像的明暗过度会越来越明显,同时可能出现一些不属于正常物体边缘的伪轮廓,呈现细小山脊状,是灰度级不够平滑造成的

图像内插

用于图像的放大缩小,旋转矫正等任务,同时也可以相对应的改变图像的分辨率
插值:通过已知的图像数据来对改变后的位置数据进行处理

最近邻插值

将原图中最相邻的灰度值赋给新位置,当对于边缘来说可能造成严重的失真
插值过程:
(1)对于一张 500x500 的图像,将其放大为 750x750
(2)采用原图的间隔创建 750*750 的网格
(3)将新图像收缩到和原图相同的大小,此时新网格的单位边长小于原网格
(4)对每个新网格中的点,找到其最近的原网格的点为其赋值
(5)将新网格扩展到 750x750 的大小,此时就获得了放大后的图片
总体来说,过程就是:放大-缩小-放大
在这里插入图片描述

线性插值

已知点(x0,y0)与 (x1,y1),计算[x0,x1]区间上的任意直线上一点的插值
y = x 1 − x x 1 − x 0 ⋅ y 0 + x − x 0 x 1 − x 0 ⋅ y 1 y = \frac{x_1-x}{x_1-x_0}\cdot{y_0}+\frac{x-x_0}{x_1-x_0}\cdot y_1 y=x1x0x1xy0+x1x0xx0y1
则认为
f ( P ) = x 1 − x x 1 − x 0 ⋅ f ( P 0 ) + x − x 0 x 1 − x 0 ⋅ f ( P 1 ) f(P) = \frac{x_1-x}{x_1-x_0}\cdot f(P_0)+\frac{x-x_0}{x_1-x_0}\cdot f(P_1) f(P)=x1x0x1xf(P0)+x1x0xx0f(P1)
在这里插入图片描述

双线性插值

用 4 个最近邻来估计给定位置的灰度值,相当于将 y 轴也算作灰度值插值,就不用考虑需要在直线上的条件,只要在 x,y 构成的平面内即可
首先还是在 x 方向进行线性插值,获得两个辅助点 R1 和 R2,然后再利用这两个辅助点在 y 方向上插值,从而得到最终的插值结果
在这里插入图片描述
我们也可以推出在三维空间中是三线性插值

双三次插值

了解即可,采用 16 个最近邻点来进行计算,效果比双线性插值更好,但是速度更慢

像素间的基本关系

主要分为 4 邻域,D 邻域,和 8 邻域
在这里插入图片描述
(对于 1 而言)
4 邻域:2,4,6,8 号格
D 邻域:3,5,7,9 号格
8 邻域:4 邻域+D 邻域
在灰度级中,我们一般考虑 3 种像素的邻接方法
(1)4 邻接:两个像素互在对方的 4 邻域中
(2)8邻接:两个像素互在对方的 8 邻域中
(3)m 邻接(混合邻接):分为两种情况:1.4 邻接 2.两个像素互在对方的 D 邻域中,且 4 邻域的交集中像素值为 0
目的:对于8邻接,在寻找两个点的路径或者计算路径长度的时候会出现二义性的问题,m邻接可以去除二义性
在这里插入图片描述
如果使用8邻接,那么A-D的距离计算就会产生歧义,但是对于m邻接,A-C不能直接联通,因为他们的4邻域的交集中有B,所以A-D的路径为A-B-C-D

通路与连通集

对于刚刚我们提到的路径,我们把其叫做通路,通路的长度即为其包含的像素个数
(1)如果起始点和终点是同一个点,那么我们就认为这条通路是闭合通路,使用了哪种邻接方式就被称为x-通路
(2)给定一个像素集合S,对于任何一个属于S的像素q,通路中连接到像素q的像素集被称为S的连通分量
(3)如果S仅有一个连通分量,则S称为连通集
(4)R为图像的一个像素子集且刚好构成连通集,则将其称为一个区域,两个区域合在一起成为一个连通集,则这两个区域称为邻接区域

前景与背景

一幅图像中有k个不连接的区域,它们均不与图像的边界相接,令 R u R_u Ru代表k个区域的并集, ( R u ) c (R_u)^c (Ru)c表示其补集
则称 R u R_u Ru为前景,$(R_u)^c为背景

图形的边界

对于图像中的一部分区域,已经定义了其邻接方式,若在此邻接方式下,区域的某像素的邻接区域中出现背景像素,则称该像素为该区域的边界

对于距离的定义

在图中,对于像素有:
(1)不是同一个点之间的距离必然大于0
(2)A到B的距离等于B到A的距离
(3)两边之和大于第三边

欧式距离

就是传统的计算距离的方式,勾股定理

D4距离(城市街区距离)

D 4 ( p , q ) = ∣ X p − X q ∣ + ∣ Y p − Y q ∣ D4(p,q) = |X_p-X_q|+|Y_p-Y_q| D4(p,q)=XpXq+YpYq

D8距离(棋盘距离)

D 8 ( p , q ) = m a x ( ∣ x p − x q ∣ , ∣ y p − y q ∣ ) D8(p,q) = max(|x_p-x_q|,|y_p-y_q|) D8(p,q)=max(xpxq,ypyq)

Dm距离

两点间的最短通路

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/18861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

操作系统真象还原:一些你可能正感到迷惑的问题

第0章-一些你可能正感到迷惑的问题 这是我看操作系统真象还原这本书的一些记录: 4 软件是如何访问硬件的 硬件在输入输出上大体分为串行和并行,相应的接口也就是串行接口和并行接口。串行硬件通过串行接口与 CPU 通信,反过来也是&#xff…

【uni-app】Pinia 持久化

小程序端 Pinia 持久化 说明:Pinia 用法与 Vue3 项目完全一致,uni-app 项目仅需解决持久化插件兼容性问题。 持久化存储插件 安装持久化存储插件: pinia-plugin-persistedstate pnpm i pinia-plugin-persistedstate插件默认使用 localStor…

MySQL——JDBC编程

目录 前言 一、JDBC概述 二、准备工作 1.下载MySQL的JDBC驱动包 2.把jar引入到项目中 三、JDBC编程 1.插入操作 2.查询操作 尾声 前言 本篇文章主要介绍如何利用Java代码进行操作数据库,在实际开发中,绝大多数对数据库的操作我们都是通过代码进行…

uni-app全局弹窗的实现方案

背景 为了解决uni-app 任意位置出现弹窗 解决方案 一、最初方案 受限于uni-app 调用组件需要每个页面都引入注册才可以使用,此方案繁琐,每个页面都要写侵入性比较强 二、改进方案 app端:新建一个页面进行跳转,可以实现伪弹窗…

筛选的艺术:数组元素的精确提取

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、筛选的基本概念 二、筛选的实际应用案例 1. 筛选能被三整除的元素 2. 筛选小于特定值…

C++ list类

目录 0.前言 1.list介绍 1.1优势 1.2劣势 1.3容器属性 2.list使用 2.1构造函数 2.1.1默认构造函数 2.1.2填充构造函数 2.1.3范围构造函数 2.1.4拷贝构造函数 2.1.5初始化列表构造函数 2.2迭代器 2.2.1 begin() 2.2.2 end() 2.2.3 cbegin() 2.2.4 cend() 2.2.…

PyMySQL连接池

背景 在用python写后端服务时候,需要与mysql数据库进行一些数据查询或者插入更新等操作。启动服务后接口运行一切正常, 隔了第二天去看服务日志就会报错,问题如下: pymysql.err.OperationalError: (2006, "MySQL server ha…

JavaScript-内存分配

内存空间 内存分为栈和堆 栈:由操作系统自动释放存放的变量值和函数值等。简单数据类型存放在栈中 栈会由低到高先入后出 堆:存储引用类型 (对象) 对象会先将数据存放在堆里面,堆的地址放在栈里面

数字孪生智慧车站:全方位可视化管理平台

运用图扑数字孪生技术,智慧车站可视化管理平台实时模拟并监控车站运行状态,通过整合即时数据与历史数据,提供精准分析和预测。该平台支持乘客流量管理、设备运行监控、安全预警等多项功能,提高车站运营效率与安全性。直观的可视化…

这个橙子真的香!老司机徒手把玩香橙派Kunpeng Pro事后回忆录

说!你是哪个门派? 香橙,芸香科柑橘属小乔木。枝通常有粗长刺,新梢及嫩叶柄常被疏短毛。叶厚纸质,翼叶倒卵状椭圆形,顶部圆或钝。。。 咦?小李?我们不是搞IT的嘛,怎么会有…

(函数)求一元二次方程的根(C语言)

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h> # include <math.h>//声明函数&#xff1b; //判断条件等于0时&#xff1b; void zeor(double a, double b);//判断条件大于0时&#xff1b; void bigzeo…

浅谈 parallelStream和Stream 源码及其应用场景

上篇讲述了list.forEach()和list.stream().forEach() 异同点 谈到了并行流的概念&#xff0c;本篇则从源码出发&#xff0c;了解一下其原理。 一、流的初始操作流程 jdk8中 将Collection中加入了转换流的概念。 default Stream<E> stream() {return StreamSupport.str…

第十三章 进程与线程

第十三章 进程与线程 程序与进程的概念 程序&#xff1a; 英文单词为Program&#xff0c;是指一系列有序指令的集合&#xff0c;使用编程语言所编写&#xff0c;用于实现一定的功能。 进程&#xff1a; 进程则是指启动后的程序&#xff0c;系统会为进程分配内存空间。 函数式…

【PingPong_注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞 …

奶奶也能看懂的耦合协调度分析

不会计算&#xff1f;跟着文献学起来~ 案例数据连接&#xff08;复制链接后粘贴到浏览器中&#xff09;&#xff1a; 耦合协调度数据​spssau.com/spssaudata.html?shareDataF363000CD033FF15E557BB75B9B0D412 假如你有这样一组数据&#xff1a; 如何进行计算分析耦合协调度…

内网安全之证书模版的管理

证书模板 Certificate templates 是 CA 证书颁发机构的一个组成部分&#xff0c;是证书策略中的重要元素&#xff0c;是用于证书注册、使用和管理的一组规则和格式。当 CA 收到对证书的请求时&#xff0c;必须对该请求应用一组规则和设置&#xff0c;以执行所请求的功能&#x…

前端知识1-4:性能优化进阶

性能优化进阶 Navigation Timing API navigationStart / end 表示从上一个文档卸载结束时 > 如果没有上一个文档&#xff0c;这个值和fetchStart相等 unloadEventStart / end 标识前一个网页unload的时间点 redirectStart / end 第一个http重定向发生和结束的时间 fetch…

Hadoop3:HDFS中DataNode与NameNode的工作流程

一、DataNode中的数据情况 数据位置 /opt/module/hadoop-3.1.3/data/dfs/data/current/BP-823420375-192.168.31.102-1714395693863/current/finalized/subdir0/subdir0块信息 每个块信息&#xff0c;由两个文件保存&#xff0c;xxx.meta保存的是数据长度、校验和、时间戳&am…

芝加哥大学最新研究:GPT-4与财务预测,重塑财务分析的未来

最近&#xff0c;芝加哥大学的研究团队发表了一篇突破性的研究&#xff0c;展示了大型语言模型&#xff08;LLM&#xff09;&#xff0c;特别是 OpenAI 开发的 GPT-4&#xff0c;如何在财务报表分析领域取得了与专业分析师相匹配甚至超越的表现。这项研究不仅凸显了人工智能在高…

GDPU Java 天码行空13

&#xff08;一&#xff09;实验目的 1、掌握JAVA中与网络程序开发相关的知识点&#xff1b; 2、理解并掌握网络编程开发思想及方法&#xff1b; 3、熟悉项目开发的分包方法和依据&#xff1b; 4、实现聊天室中客服端和服务器端的实现方法&#xff1b; 5、熟悉多线程程序开发方…