文章目录
- 1. 运动的描述
- 2. 拉格朗日描述下的变形
- 2.1 线元的变化
- 2.2 体元的变化
- 2.3 面元的变化
1. 运动的描述
在连续介质力学中,存在着两种对运动的描述,一种为拉格朗日描述,即通过描述每个物质点的运动来描述整个变形体的运动,也称为物质描述,另外一种为欧拉描述,即通过描述每个空间位置点物理量来描述整个变形体的运动,也称空间描述。下面我们通过一些说明来梳理清两者的内容和区别。
假设在 t = 0 t=0 t=0时刻,变形体在空间中的位置如下图所示,其中 i 1 → 、 i 2 → 、 i 3 → \overrightarrow{i_1}、\overrightarrow{i_2}、\overrightarrow{i_3} i1、i2、i3 为此时空间坐标系, i 1 ′ → 、 i 2 ′ → 、 i 3 ′ → \overrightarrow{i^{'}_1}、\overrightarrow{i^{'}_2}、\overrightarrow{i^{'}_3} i1′、i2′、i3′ 为固结在此变形体上的直角坐标系,经过 t t t时间后,变形体发生运动和变形,其位形(位置和形状)变成下图右侧所示,此时固结于变形体的坐标系将发生角度和长度的变化,其不一定能够继续保持直角坐标系,而是成为下图右侧黄色斜体坐标系的形式。
现在我们来讨论变形体的运动,在拉格朗日描述中,我们关注的是物质点的运动,例如在上图中的P点,在 t = 0 t=0 t=0时刻,P点在 i 1 ′ → i 2 ′ → i 3 ′ → \overrightarrow{i^{'}_1}\overrightarrow{i^{'}_2}\overrightarrow{i^{'}_3} i1′i2′i3′ 中的坐标为 < x 1 ′ , x 2 ′ , x 3 ′ > <x^{'}_1,x^{'}_2,x^{'}_3> <x1′,x2′,x3′>,在 i 1 → i 2 → i 3 → \overrightarrow{i_1}\overrightarrow{i_2}\overrightarrow{i_3} i1i2i3 中的坐标可由下式确定
O P → = O A → + A P → = O A → + < x 1 ′ , x 2 ′ , x 3 ′ > (1.1) \overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{AP}=\overrightarrow{OA}+<x^{'}_1,x^{'}_2,x^{'}_3>\tag{1.1} OP=OA+AP=OA+<x1′,x2′,x3′>(1.1)
在 t t t时刻,P点运动至P‘点,此时P‘点在固结于变形体的 i 1 ′ → i 2 ′ → i 3 ′ → \overrightarrow{i^{'}_1}\overrightarrow{i^{'}_2}\overrightarrow{i^{'}_3} i1′i2′i3′的坐标已经不容易表示了,我们直接记录P‘在 i 1 → i 2 → i 3 → \overrightarrow{i_1}\overrightarrow{i_2}\overrightarrow{i_3} i1i2i3 空间坐标系中的位置坐标为 < x 1 , x 2 , x 3 > <x_1,x_2,x_3> <x1,x2,x3>,显然这与P点初始坐标和时间是相关的,当取相应的坐标系使得 O A → = 0 \overrightarrow{OA}=0 OA=0,且 i 1 ′ → i 2 ′ → i 3 ′ → \overrightarrow{i^{'}_1}\overrightarrow{i^{'}_2}\overrightarrow{i^{'}_3} i1′i2′i3′ 与 i 1 → i 2 → i 3 → \overrightarrow{i_1}\overrightarrow{i_2}\overrightarrow{i_3} i1i2i3 坐标轴平行,即初始固结于变形体的坐标系和空间坐标系取一致坐标系,此时,P点初始空间坐标即为 < x 1 ′ , x 2 ′ , x 3 ′ > <x^{'}_1,x^{'}_2,x^{'}_3> <x1′,x2′,x3′>,那么 x i = x i ( x j ′ , t ) x_i=x_i(x^{'}_j,t) xi=xi(xj′,t),那么此时物质点P点的位移为
u i = x i ( x j ′ , t ) − x i ′ (1.2) u_i=x_i(x^{'}_j,t)-x^{'}_i\tag{1.2} ui=xi(xj′,t)−xi′(1.2)
接下来,我们来看看欧拉描述下,变形体的运动。在欧拉描述中,我们将关注空间中的某一位置点,比如我们关注空间位置点P’点,该点的空间位置坐标为 < x 1 , x 2 , x 3 > <x_1,x_2,x_3> <x1,x2,x3>,当 t = t t=t t=t时,有一个 t = 0 t=0 t=0时刻处于P点的物质点此时占据该位置(当 t = t ′ t=t^{'} t=t′时,占据该位置的物质可能是 t = 0 t=0 t=0时刻的其他物质点)。因此,当 t = t t=t t=t时占据空间位置点P’点的物质,在 t = 0 t=0 t=0时该物质点的初始坐标为 x i ′ = x i ′ ( x j , t ) x^{'}_i=x^{'}_i(x_j,t) xi′=xi′(xj,t)。那么此时,位移由下式确定
u i = x i − x i ′ ( x j , t ) (1.3) u_i=x_i-x^{'}_i(x_j,t)\tag{1.3} ui=xi−xi′(xj,t)(1.3)
2. 拉格朗日描述下的变形
2.1 线元的变化
接下来,我们来讨论拉格朗日描述下变形体的变形。坐标系仍然是将 t = 0 t=0 t=0时刻的固结与变形体的坐标系 i 1 ′ → i 2 ′ → i 3 ′ → \overrightarrow{i^{'}_1}\overrightarrow{i^{'}_2}\overrightarrow{i^{'}_3} i1′i2′i3′和空间坐标系 i 1 → i 2 → i 3 → \overrightarrow{i_1}\overrightarrow{i_2}\overrightarrow{i_3} i1i2i3 选为统一坐标系,如下图所示。
此时, t = 0 t=0 t=0时刻的微元六面体OABC在 t = t t=t t=t时刻变成微元六面体oabc。其中设O点坐标为变形体在变形前的坐标(即在初始固结于变形体的 i 1 ′ → i 2 ′ → i 3 ′ → \overrightarrow{i^{'}_1}\overrightarrow{i^{'}_2}\overrightarrow{i^{'}_3} i1′i2′i3′坐标系下)为 < x 1 ′ , x 2 ′ , x 3 ′ > <x^{'}_1,x^{'}_2,x^{'}_3> <x1′,x2′,x3′>,A点坐标为 < x 1 ′ + d x 1 ′ , x 2 ′ + d x 2 ′ , x 3 ′ + d x 3 ′ > <x^{'}_1+dx^{'}_1,x^{'}_2+dx^{'}_2,x^{'}_3+dx^{'}_3> <x1′+dx1′,x2′+dx2′,x3′+dx3′>,经过t时间后,变形前微元OA变为微元oa,同时用变形后的坐标来表示,那么o点空间坐标为 < x 1 , x 2 , x 3 > <x_1,x_2,x_3> <x1,x2,x3>,a点空间坐标为 < x 1 + d x 1 , x 2 + d x 2 , x 3 + d x 3 > <x_1+dx_1,x_2+dx_2,x_3+dx_3> <x1+dx1,x2+dx2,x3+dx3>,上述坐标有以下关系
x i = x i ( x j ′ , t ) x i + d x i = x i ( x j ′ + d x j ′ , t ) (2.1) x_i=x_i(x^{'}_j,t)\\ x_i+dx_i=x_i(x^{'}_j+dx^{'}_j,t)\tag{2.1} xi=xi(xj′,t)xi+dxi=xi(xj′+dxj′,t)(2.1)
那么,不难得到
d x i = x i ( x j ′ + d x j ′ , t ) − x i ( x j ′ , t ) = x i ( x j ′ , t ) + ∂ x i ∂ x j ′ d x j ′ − x i ( x j ′ , t ) = ∂ x i ∂ x j ′ d x j ′ (2.2) \begin{aligned} dx_i&=x_i(x^{'}_j+dx^{'}_j,t)-x_i(x^{'}_j,t)\\ &=x_i(x^{'}_j,t)+\frac{\partial {x_i}}{\partial {x^{'}_j}}dx^{'}_j-x_i(x^{'}_j,t)\\ &=\frac{\partial {x_i}}{\partial {x^{'}_j}}dx^{'}_j\\ \end{aligned}\tag{2.2} dxi=xi(xj′+dxj′,t)−xi(xj′,t)=xi(xj′,t)+∂xj′∂xidxj′−xi(xj′,t)=∂xj′∂xidxj′(2.2)
以 d x 1 dx_1 dx1为例,有
d x 1 = ∂ x 1 ∂ x 1 ′ d x 1 ′ + ∂ x 1 ∂ x 2 ′ d x 2 ′ + ∂ x 1 ∂ x 3 ′ d x 3 ′ (2.3) dx_1=\frac{\partial {x_1}}{\partial {x^{'}_1}}dx^{'}_1+\frac{\partial {x_1}}{\partial {x^{'}_2}}dx^{'}_2+\frac{\partial {x_1}}{\partial {x^{'}_3}}dx^{'}_3\tag{2.3} dx1=∂x1′∂x1dx1′+∂x2′∂x1dx2′+∂x3′∂x1dx3′(2.3)
其中第一项即为线元沿 i 1 ′ → \overrightarrow{i^{'}_1} i1′方向的伸长,第二项为线元从 i 1 ′ → \overrightarrow{i^{'}_1} i1′向 i 2 ′ → \overrightarrow{i^{'}_2} i2′转动引起 i 1 ′ → \overrightarrow{i^{'}_1} i1′投影的伸长量,第三项线元从 i 1 ′ → \overrightarrow{i^{'}_1} i1′向 i 3 ′ → \overrightarrow{i^{'}_3} i3′转动引起 i 1 ′ → \overrightarrow{i^{'}_1} i1′投影的伸长量。
同理,设B点坐标为 < x 1 ′ + δ x 1 ′ , x 2 ′ + δ x 2 ′ , x 3 ′ + δ x 3 ′ > <x^{'}_1+\delta x^{'}_1,x^{'}_2+\delta x^{'}_2,x^{'}_3+\delta x^{'}_3> <x1′+δx1′,x2′+δx2′,x3′+δx3′>,b点坐标为 < x 1 + δ x 1 , x 2 + δ x 2 , x 3 + δ x 3 > <x_1+\delta x_1,x_2+\delta x_2,x_3+\delta x_3> <x1+δx1,x2+δx2,x3+δx3>,那么有
δ x i = x i ( x j ′ + δ x j ′ , t ) − x i ( x j ′ , t ) = x i ( x j ′ , t ) + ∂ x i ∂ x j ′ δ x j ′ − x i ( x j ′ , t ) = ∂ x i ∂ x j ′ δ x j ′ (2.4) \begin{aligned} \delta x_i&=x_i(x^{'}_j+\delta x^{'}_j,t)-x_i(x^{'}_j,t)\\ &=x_i(x^{'}_j,t)+\frac{\partial {x_i}}{\partial {x^{'}_j}}\delta x^{'}_j-x_i(x^{'}_j,t)\\ &=\frac{\partial {x_i}}{\partial {x^{'}_j}}\delta x^{'}_j \end{aligned}\tag{2.4} δxi=xi(xj′+δxj′,t)−xi(xj′,t)=xi(xj′,t)+∂xj′∂xiδxj′−xi(xj′,t)=∂xj′∂xiδxj′(2.4)
设C点坐标为 < x 1 ′ + Δ x 1 ′ , x 2 ′ + Δ x 2 ′ , x 3 ′ + Δ x 3 ′ > <x^{'}_1+\Delta x^{'}_1,x^{'}_2+\Delta x^{'}_2,x^{'}_3+\Delta x^{'}_3> <x1′+Δx1′,x2′+Δx2′,x3′+Δx3′>,b点坐标为 < x 1 + Δ x 1 , x 2 + Δ x 2 , x 3 + Δ x 3 > <x_1+\Delta x_1,x_2+\Delta x_2,x_3+\Delta x_3> <x1+Δx1,x2+Δx2,x3+Δx3>,那么有
Δ x i = x i ( x j ′ + Δ x j ′ , t ) − x i ( x j ′ , t ) = x i ( x j ′ , t ) + ∂ x i ∂ x j ′ Δ x j ′ − x i ( x j ′ , t ) = ∂ x i ∂ x j ′ Δ x j ′ (2.5) \begin{aligned} \Delta x_i&=x_i(x^{'}_j+\Delta x^{'}_j,t)-x_i(x^{'}_j,t)\\ &=x_i(x^{'}_j,t)+\frac{\partial {x_i}}{\partial {x^{'}_j}}\Delta x^{'}_j-x_i(x^{'}_j,t)\\ &=\frac{\partial {x_i}}{\partial {x^{'}_j}}\Delta x^{'}_j \end{aligned}\tag{2.5} Δxi=xi(xj′+Δxj′,t)−xi(xj′,t)=xi(xj′,t)+∂xj′∂xiΔxj′−xi(xj′,t)=∂xj′∂xiΔxj′(2.5)
2.2 体元的变化
那么,变形后,六面体微元体积变化为
d V = [ O A → , O B → , O C → ] = ∣ d x 1 d x 2 d x 3 δ x 1 δ x 2 δ x 3 Δ x 1 Δ x 2 Δ x 3 ∣ = ∣ ∂ x 1 ∂ x j ′ d x j ′ ∂ x 2 ∂ x j ′ d x j ′ ∂ x 3 ∂ x j ′ d x j ′ ∂ x 1 ∂ x j ′ δ x j ′ ∂ x 2 ∂ x j ′ δ x j ′ ∂ x 3 ∂ x j ′ δ x j ′ ∂ x 1 ∂ x j ′ Δ x j ′ ∂ x 2 ∂ x j ′ Δ x j ′ ∂ x 3 ∂ x j ′ Δ x j ′ ∣ = ∣ d x 1 ′ d x 2 ′ d x 3 ′ δ x 1 ′ δ x 2 ′ δ x 3 ′ Δ x 1 ′ Δ x 2 ′ Δ x 3 ′ ∣ ⋅ ∣ ∂ x 1 ∂ x 1 ′ ∂ x 2 ∂ x 1 ′ ∂ x 3 ∂ x 1 ′ ∂ x 1 ∂ x 2 ′ ∂ x 2 ∂ x 2 ′ ∂ x 3 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ ∂ x 2 ∂ x 3 ′ ∂ x 3 ∂ x 3 ′ ∣ (2.6) dV = [\overrightarrow{OA} , \overrightarrow{OB},\overrightarrow{OC}]= \begin{vmatrix} dx_1 & dx_2 & dx_3\\ \delta x_1 & \delta x_2 & \delta x_3\\ \Delta x_1 & \Delta x_2 & \Delta x_3 \end{vmatrix}\\ =\begin{vmatrix} \frac{\partial {x_1}}{\partial {x^{'}_j}}dx^{'}_j & \frac{\partial {x_2}}{\partial {x^{'}_j}}dx^{'}_j & \frac{\partial {x_3}}{\partial {x^{'}_j}}dx^{'}_j\\ \frac{\partial {x_1}}{\partial {x^{'}_j}}\delta x^{'}_j & \frac{\partial {x_2}}{\partial {x^{'}_j}}\delta x^{'}_j & \frac{\partial {x_3}}{\partial {x^{'}_j}}\delta x^{'}_j\\ \frac{\partial {x_1}}{\partial {x^{'}_j}}\Delta x^{'}_j & \frac{\partial {x_2}}{\partial {x^{'}_j}}\Delta x^{'}_j & \frac{\partial {x_3}}{\partial {x^{'}_j}}\Delta x^{'}_j \end{vmatrix}\\ =\begin{vmatrix} dx^{'}_1 & dx^{'}_2 & dx^{'}_3\\ \delta x^{'}_1 & \delta x^{'}_2 & \delta x^{'}_3\\ \Delta x^{'}_1 & \Delta x^{'}_2 & \Delta x^{'}_3 \end{vmatrix}\cdot \begin{vmatrix} \frac{\partial {x_1}}{\partial {x^{'}_1}} & \frac{\partial {x_2}}{\partial {x^{'}_1}} & \frac{\partial {x_3}}{\partial {x^{'}_1}}\\ \frac{\partial {x_1}}{\partial {x^{'}_2}} & \frac{\partial {x_2}}{\partial {x^{'}_2}} & \frac{\partial {x_3}}{\partial {x^{'}_2}}\\ \frac{\partial {x_1}}{\partial {x^{'}_3}} & \frac{\partial {x_2}}{\partial {x^{'}_3}} & \frac{\partial {x_3}}{\partial {x^{'}_3}} \end{vmatrix}\tag{2.6} dV=[OA,OB,OC]= dx1δx1Δx1dx2δx2Δx2dx3δx3Δx3 = ∂xj′∂x1dxj′∂xj′∂x1δxj′∂xj′∂x1Δxj′∂xj′∂x2dxj′∂xj′∂x2δxj′∂xj′∂x2Δxj′∂xj′∂x3dxj′∂xj′∂x3δxj′∂xj′∂x3Δxj′ = dx1′δx1′Δx1′dx2′δx2′Δx2′dx3′δx3′Δx3′ ⋅ ∂x1′∂x1∂x2′∂x1∂x3′∂x1∂x1′∂x2∂x2′∂x2∂x3′∂x2∂x1′∂x3∂x2′∂x3∂x3′∂x3 (2.6)
(体积为 O A → \overrightarrow{OA} OA、 O B → \overrightarrow{OB} OB、 O C → \overrightarrow{OC} OC混合积)
我们定义变形梯度矩阵为
F = [ ∂ x 1 ∂ x 1 ′ ∂ x 2 ∂ x 1 ′ ∂ x 3 ∂ x 1 ′ ∂ x 1 ∂ x 2 ′ ∂ x 2 ∂ x 2 ′ ∂ x 3 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ ∂ x 2 ∂ x 3 ′ ∂ x 3 ∂ x 3 ′ ] T (2.7) F=\begin{bmatrix} \frac{\partial {x_1}}{\partial {x^{'}_1}} & \frac{\partial {x_2}}{\partial {x^{'}_1}} & \frac{\partial {x_3}}{\partial {x^{'}_1}}\\ \frac{\partial {x_1}}{\partial {x^{'}_2}} & \frac{\partial {x_2}}{\partial {x^{'}_2}} & \frac{\partial {x_3}}{\partial {x^{'}_2}}\\ \frac{\partial {x_1}}{\partial {x^{'}_3}} & \frac{\partial {x_2}}{\partial {x^{'}_3}} & \frac{\partial {x_3}}{\partial {x^{'}_3}} \end{bmatrix}^T\tag{2.7} F= ∂x1′∂x1∂x2′∂x1∂x3′∂x1∂x1′∂x2∂x2′∂x2∂x3′∂x2∂x1′∂x3∂x2′∂x3∂x3′∂x3 T(2.7)
变形梯度类似小变形假设下的应变矩阵,包含了线元伸长和转动等信息。
高等数学的知识,不难得出变形梯度行列式为Jaccobi行列式,即
J = ∣ ∂ x 1 ∂ x 1 ′ ∂ x 1 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ ∂ x 2 ∂ x 1 ′ ∂ x 2 ∂ x 2 ′ ∂ x 2 ∂ x 3 ′ ∂ x 3 ∂ x 1 ′ ∂ x 3 ∂ x 2 ′ ∂ x 3 ∂ x 3 ′ ∣ = ∣ ∂ x 1 ∂ x 1 ′ ∂ x 2 ∂ x 1 ′ ∂ x 3 ∂ x 1 ′ ∂ x 1 ∂ x 2 ′ ∂ x 2 ∂ x 2 ′ ∂ x 3 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ ∂ x 2 ∂ x 3 ′ ∂ x 3 ∂ x 3 ′ ∣ (2.8) J=\begin{vmatrix} \frac{\partial {x_1}}{\partial {x^{'}_1}} & \frac{\partial {x_1}}{\partial {x^{'}_2}}& \frac{\partial {x_1}}{\partial {x^{'}_3}}\\ \frac{\partial {x_2}}{\partial {x^{'}_1}} & \frac{\partial {x_2}}{\partial {x^{'}_2}} & \frac{\partial {x_2}}{\partial {x^{'}_3}}\\ \frac{\partial {x_3}}{\partial {x^{'}_1}} & \frac{\partial {x_3}}{\partial {x^{'}_2}} & \frac{\partial {x_3}}{\partial {x^{'}_3}} \end{vmatrix}=\begin{vmatrix} \frac{\partial {x_1}}{\partial {x^{'}_1}} & \frac{\partial {x_2}}{\partial {x^{'}_1}} & \frac{\partial {x_3}}{\partial {x^{'}_1}}\\ \frac{\partial {x_1}}{\partial {x^{'}_2}} & \frac{\partial {x_2}}{\partial {x^{'}_2}} & \frac{\partial {x_3}}{\partial {x^{'}_2}}\\ \frac{\partial {x_1}}{\partial {x^{'}_3}} & \frac{\partial {x_2}}{\partial {x^{'}_3}} & \frac{\partial {x_3}}{\partial {x^{'}_3}} \end{vmatrix}\tag{2.8} J= ∂x1′∂x1∂x1′∂x2∂x1′∂x3∂x2′∂x1∂x2′∂x2∂x2′∂x3∂x3′∂x1∂x3′∂x2∂x3′∂x3 = ∂x1′∂x1∂x2′∂x1∂x3′∂x1∂x1′∂x2∂x2′∂x2∂x3′∂x2∂x1′∂x3∂x2′∂x3∂x3′∂x3 (2.8)
那么上式(2.6)变为
d V = J d V 0 (2.9) dV=JdV_0\tag{2.9} dV=JdV0(2.9)
2.3 面元的变化
变形后,一个面元变化为下图,其中面元 O A B \fbox{} OAB OAB存在在变形前的变形体中,也就是初始构形中,面元 o a b \fbox{} oab oab存在在变形后的变形体中,也就是即时构形中。
其中对有向面元有下式成立
N → d A 0 = O A → ⊗ O B → = ∣ i 1 → i 2 → i 3 → d x 1 ′ d x 2 ′ d x 3 ′ δ x 1 ′ δ x 2 ′ δ x 3 ′ ∣ = i 1 → ( d x 2 ′ δ x 3 ′ − d x 3 ′ δ x 2 ′ ) + i 2 → ( d x 3 ′ δ x 1 ′ − d x 1 ′ δ x 3 ′ ) + i 3 → ( d x 1 ′ δ x 2 ′ − d x 2 ′ δ x 1 ′ ) (2.10) \begin{aligned} \overrightarrow{N}dA_0&=\overrightarrow{OA}\otimes\overrightarrow{OB}\\ &=\begin{vmatrix} \overrightarrow{i_1}&\overrightarrow{i_2}&\overrightarrow{i_3}\\ dx^{'}_1 & dx^{'}_2 & dx^{'}_3\\ \delta x^{'}_1 & \delta x^{'}_2 & \delta x^{'}_3 \end{vmatrix}\\ &=\overrightarrow{i_1}(dx^{'}_2\delta x^{'}_3-dx^{'}_3\delta x^{'}_2)+\overrightarrow{i_2}(dx^{'}_3\delta x^{'}_1-dx^{'}_1\delta x^{'}_3)+\overrightarrow{i_3}(dx^{'}_1\delta x^{'}_2-dx^{'}_2\delta x^{'}_1) \end{aligned} \tag{2.10} NdA0=OA⊗OB= i1dx1′δx1′i2dx2′δx2′i3dx3′δx3′ =i1(dx2′δx3′−dx3′δx2′)+i2(dx3′δx1′−dx1′δx3′)+i3(dx1′δx2′−dx2′δx1′)(2.10)
n → d A = o a → ⊗ o b → = ∣ i 1 → i 2 → i 3 → d x 1 d x 2 d x 3 δ x 1 δ x 2 δ x 3 ∣ = i 1 → ( d x 2 δ x 3 − d x 3 δ x 2 ) + i 2 → ( d x 3 δ x 1 − d x 1 δ x 3 ) + i 3 → ( d x 1 δ x 2 − d x 2 δ x 1 ) (2.11) \begin{aligned} \overrightarrow{n}dA&=\overrightarrow{oa}\otimes\overrightarrow{ob}\\ &=\begin{vmatrix} \overrightarrow{i_1}&\overrightarrow{i_2}&\overrightarrow{i_3}\\ dx_1 & dx_2 & dx_3\\ \delta x_1 & \delta x_2 & \delta x_3 \end{vmatrix}\\ &=\overrightarrow{i_1}(dx_2\delta x_3-dx_3\delta x_2)+\overrightarrow{i_2}(dx_3\delta x_1-dx_1\delta x_3)+\overrightarrow{i_3}(dx_1\delta x_2-dx_2\delta x_1) \end{aligned} \tag{2.11} ndA=oa⊗ob= i1dx1δx1i2dx2δx2i3dx3δx3 =i1(dx2δx3−dx3δx2)+i2(dx3δx1−dx1δx3)+i3(dx1δx2−dx2δx1)(2.11)
当然,上两式可以用Einstein 标记法其分量形式为
N i d A 0 i i → = e i j k i i → d x j ′ δ x k ′ (2.10’) \begin{aligned} N_idA_0\overrightarrow{i_i}&=e_{ijk}\overrightarrow{i_i}dx^{'}_j\delta x^{'}_k \end{aligned} \tag{2.10'} NidA0ii=eijkiidxj′δxk′(2.10’)
n i d A i i → = e i j k i i → d x j δ x k (2.11’) \begin{aligned} n_idA\overrightarrow{i_i}&=e_{ijk}\overrightarrow{i_i}dx_j\delta x_k \end{aligned} \tag{2.11'} nidAii=eijkiidxjδxk(2.11’)
对于式(2.11‘),有
n i d A = e i j k d x j δ x k = e i j k ∂ x j ∂ x l ′ d x l ′ ⋅ ∂ x k ∂ x m ′ δ x m ′ = e i j k ∂ x j ∂ x l ′ ∂ x k ∂ x m ′ d x l ′ δ x m ′ (2.12) \begin{aligned} n_idA&=e_{ijk}dx_j\delta x_k\\ &=e_{ijk}\frac{\partial x_j}{\partial x^{'}_l}dx^{'}_l\cdot\frac{\partial x_k}{\partial x^{'}_m}\delta x^{'}_m\\ &=e_{ijk}\frac{\partial x_j}{\partial x^{'}_l}\frac{\partial x_k}{\partial x^{'}_m}dx^{'}_l\delta x^{'}_m \end{aligned} \tag{2.12} nidA=eijkdxjδxk=eijk∂xl′∂xjdxl′⋅∂xm′∂xkδxm′=eijk∂xl′∂xj∂xm′∂xkdxl′δxm′(2.12)
对上式左乘 ∂ x i ∂ x p ′ \frac{\partial x_i}{\partial x^{'}_p} ∂xp′∂xi,有
∂ x i ∂ x p ′ n i d A = e i j k ∂ x i ∂ x p ′ ∂ x j ∂ x l ′ ∂ x k ∂ x m ′ d x l ′ δ x m ′ = J ⋅ e p l m d x l ′ δ x m ′ = J N p d A 0 (2.13) \begin{aligned} \frac{\partial x_i}{\partial x^{'}_p}n_idA &=e_{ijk}\frac{\partial x_i}{\partial x^{'}_p}\frac{\partial x_j}{\partial x^{'}_l}\frac{\partial x_k}{\partial x^{'}_m}dx^{'}_l\delta x^{'}_m\\ &=J\cdot e_{plm}dx^{'}_l\delta x^{'}_m\\ &=JN_pdA_0 \end{aligned} \tag{2.13} ∂xp′∂xinidA=eijk∂xp′∂xi∂xl′∂xj∂xm′∂xkdxl′δxm′=J⋅eplmdxl′δxm′=JNpdA0(2.13)
这里需要用到
e i j k ∂ x i ∂ x p ′ ∂ x j ∂ x l ′ ∂ x k ∂ x m ′ = J ⋅ e p l m e_{ijk}\frac{\partial x_i}{\partial x^{'}_p}\frac{\partial x_j}{\partial x^{'}_l}\frac{\partial x_k}{\partial x^{'}_m}=J\cdot e_{plm} eijk∂xp′∂xi∂xl′∂xj∂xm′∂xk=J⋅eplm
我们先将Jaccobi行列式展开
J = + ∂ x 1 ∂ x 1 ′ ∂ x 2 ∂ x 2 ′ ∂ x 3 ∂ x 3 ′ + ∂ x 2 ∂ x 1 ′ ∂ x 3 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ + ∂ x 3 ∂ x 1 ′ ∂ x 1 ∂ x 2 ′ ∂ x 2 ∂ x 3 ′ − ∂ x 1 ∂ x 1 ′ ∂ x 3 ∂ x 2 ′ ∂ x 2 ∂ x 3 ′ − ∂ x 2 ∂ x 1 ′ ∂ x 1 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ − ∂ x 3 ∂ x 1 ′ ∂ x 2 ∂ x 2 ′ ∂ x 1 ∂ x 3 ′ = e i j k ∂ x i ∂ x 1 ′ ∂ x j ∂ x 2 ′ ∂ x k ∂ x 3 ′ J=+\frac{\partial x_1}{\partial x^{'}_1}\frac{\partial x_2}{\partial x^{'}_2}\frac{\partial x_3}{\partial x^{'}_3}+\frac{\partial x_2}{\partial x^{'}_1}\frac{\partial x_3}{\partial x^{'}_2}\frac{\partial x_1}{\partial x^{'}_3}+\frac{\partial x_3}{\partial x^{'}_1}\frac{\partial x_1}{\partial x^{'}_2}\frac{\partial x_2}{\partial x^{'}_3}\\ \quad\\ -\frac{\partial x_1}{\partial x^{'}_1}\frac{\partial x_3}{\partial x^{'}_2}\frac{\partial x_2}{\partial x^{'}_3} -\frac{\partial x_2}{\partial x^{'}_1}\frac{\partial x_1}{\partial x^{'}_2}\frac{\partial x_1}{\partial x^{'}_3} -\frac{\partial x_3}{\partial x^{'}_1}\frac{\partial x_2}{\partial x^{'}_2}\frac{\partial x_1}{\partial x^{'}_3}\\ \quad\\ =e_{ijk}\frac{\partial x_i}{\partial x^{'}_1}\frac{\partial x_j}{\partial x^{'}_2}\frac{\partial x_k}{\partial x^{'}_3} J=+∂x1′∂x1∂x2′∂x2∂x3′∂x3+∂x1′∂x2∂x2′∂x3∂x3′∂x1+∂x1′∂x3∂x2′∂x1∂x3′∂x2−∂x1′∂x1∂x2′∂x3∂x3′∂x2−∂x1′∂x2∂x2′∂x1∂x3′∂x1−∂x1′∂x3∂x2′∂x2∂x3′∂x1=eijk∂x1′∂xi∂x2′∂xj∂x3′∂xk
J = − ∂ x 1 ∂ x 1 ′ ∂ x 2 ∂ x 3 ′ ∂ x 3 ∂ x 2 ′ − ∂ x 2 ∂ x 1 ′ ∂ x 3 ∂ x 3 ′ ∂ x 1 ∂ x 2 ′ − ∂ x 3 ∂ x 1 ′ ∂ x 1 ∂ x 3 ′ ∂ x 2 ∂ x 2 ′ + ∂ x 1 ∂ x 1 ′ ∂ x 3 ∂ x 3 ′ ∂ x 2 ∂ x 2 ′ + ∂ x 2 ∂ x 1 ′ ∂ x 1 ∂ x 3 ′ ∂ x 1 ∂ x 2 ′ + ∂ x 3 ∂ x 1 ′ ∂ x 2 ∂ x 3 ′ ∂ x 1 ∂ x 2 ′ = − e i j k ∂ x i ∂ x 1 ′ ∂ x j ∂ x 3 ′ ∂ x k ∂ x 2 ′ J=-\frac{\partial x_1}{\partial x^{'}_1}\frac{\partial x_2}{\partial x^{'}_3}\frac{\partial x_3}{\partial x^{'}_2}-\frac{\partial x_2}{\partial x^{'}_1}\frac{\partial x_3}{\partial x^{'}_3}\frac{\partial x_1}{\partial x^{'}_2}-\frac{\partial x_3}{\partial x^{'}_1}\frac{\partial x_1}{\partial x^{'}_3}\frac{\partial x_2}{\partial x^{'}_2}\\ \quad\\ +\frac{\partial x_1}{\partial x^{'}_1}\frac{\partial x_3}{\partial x^{'}_3}\frac{\partial x_2}{\partial x^{'}_2} +\frac{\partial x_2}{\partial x^{'}_1}\frac{\partial x_1}{\partial x^{'}_3}\frac{\partial x_1}{\partial x^{'}_2} +\frac{\partial x_3}{\partial x^{'}_1}\frac{\partial x_2}{\partial x^{'}_3}\frac{\partial x_1}{\partial x^{'}_2}\\ \quad\\ =-e_{ijk}\frac{\partial x_i}{\partial x^{'}_1}\frac{\partial x_j}{\partial x^{'}_3}\frac{\partial x_k}{\partial x^{'}_2} J=−∂x1′∂x1∂x3′∂x2∂x2′∂x3−∂x1′∂x2∂x3′∂x3∂x2′∂x1−∂x1′∂x3∂x3′∂x1∂x2′∂x2+∂x1′∂x1∂x3′∂x3∂x2′∂x2+∂x1′∂x2∂x3′∂x1∂x2′∂x1+∂x1′∂x3∂x3′∂x2∂x2′∂x1=−eijk∂x1′∂xi∂x3′∂xj∂x2′∂xk
不难得出, J e p l m = e i j k ∂ x i ∂ x p ′ ∂ x j ∂ x l ′ ∂ x k ∂ x m ′ Je_{plm}=e_{ijk}\frac{\partial x_i}{\partial x^{'}_p}\frac{\partial x_j}{\partial x^{'}_l}\frac{\partial x_k}{\partial x^{'}_m} Jeplm=eijk∂xp′∂xi∂xl′∂xj∂xm′∂xk
对式(2.13)左乘 ∂ x p ′ ∂ x j \frac{\partial x^{'}_p}{\partial x_j} ∂xj∂xp′,那么有
∂ x p ′ ∂ x j ∂ x i ∂ x p ′ n i d A = ∂ x p ′ ∂ x j J N p d A 0 ⇒ δ i j n i d A = ∂ x p ′ ∂ x j J N p d A 0 ⇒ n j d A = ∂ x p ′ ∂ x j J N p d A 0 \begin{aligned} &\frac{\partial x^{'}_p}{\partial x_j}\frac{\partial x_i}{\partial x^{'}_p}n_idA =\frac{\partial x^{'}_p}{\partial x_j}JN_pdA_0\\ \Rightarrow &\delta_{ij}n_idA =\frac{\partial x^{'}_p}{\partial x_j}JN_pdA_0\\ \Rightarrow &n_jdA =\frac{\partial x^{'}_p}{\partial x_j}JN_pdA_0 \end{aligned} ⇒⇒∂xj∂xp′∂xp′∂xinidA=∂xj∂xp′JNpdA0δijnidA=∂xj∂xp′JNpdA0njdA=∂xj∂xp′JNpdA0
上式写成矩阵形式,如下所示
n ⋅ d A = J ⋅ N ⋅ F − 1 ⋅ d A 0 \begin{aligned} \mathbf {n}\cdot dA =J\cdot \mathbf N\cdot\mathbf {F^{-1}} \cdot dA_0 \end{aligned} n⋅dA=J⋅N⋅F−1⋅dA0