人脸识别——Webface-OCC遮挡人脸识别算法解析

1. 概述

自2019年被誉为人脸识别技术的元年,各地纷纷引入这项技术。然而,自2020年起,为了抵御冠状病毒(COVID-19)的全球传播,人们普遍开始佩戴口罩。众所周知,现有人脸识别模型在面对遮挡物(如口罩)时,其识别精度会显著下降。这一现象的主要原因在于,现有数据集往往没有充分考虑遮挡因素。

目前,尚未有一个公开的数据集能够全面考虑人脸识别中的遮挡问题。尽管已有一些研究提出了针对遮挡感知的人脸识别模型,包括对面具和太阳镜的识别,但这些研究大多是基于自行构建的数据集。然而,这些自行构建的数据集与现实情况存在较大差异,因此其有效性受到限制。

例如,(a) 展示了2016年报道的MaskNet所使用的数据集样本。该数据集通过随机应用不同尺寸的黑色遮罩来模拟遮挡。然而,这种单一的遮挡类型预计会降低模型的泛化能力。此外,考虑到实际应用场景,这种咬合(遮挡)方式显得并不自然。

(b) 展示了2019年报道的成对差分连体网络(PDSN)所使用的三个数据集样本。这里提供了三种不同的遮挡类型,与(a)相比,遮挡类型的多样性有所增加。但是,从实际应用的角度来看,遮挡的位置和大小仍然不够自然。

© 展示了2020年报告的wID所使用的数据集样本。在这个数据集中,人脸图像被随机应用了方形框作为遮挡。尽管采用了综合方法,但这种方法仍然无法很好地适应实际条件。

近年来,使用生成对抗网络(GANs)的方法受到了广泛关注,因为它们能够生成视觉上更自然的遮挡图像。然而,这些图像在细节信息上的变化可能导致在这些图像上训练的人脸识别模型在实际应用中表现不佳。

因此,尽管目前已有一些考虑遮挡的数据集,但它们大多数与现实情况相去甚远。

为了改善这一状况,本文提出了一个新的公共遮挡感知数据集——Webface-OCC。(d) 展示了Webface-OCC的样本数据。该数据集包含10,575个不同主体的804,704张面部图像,涵盖了各种遮挡类型,有望为人脸识别技术的发展提供更贴近实际的支持。


论文地址:https://arxiv.org/abs/2103.02805
源码地址:https://github.com/Baojin-Huang/Webface-OCC

2. Webface-OCC

Webface-OCC是基于广泛使用的CASIA-Webface人脸识别数据集构建的。CASIA-Webface数据集包含了轻微遮挡的人脸图像,使得在该数据集上训练的人脸识别模型在小遮挡情况下表现出色。

为了进一步提升模型在遮挡条件下的表现,我们对CASIA-Webface进行了增强,创建了全新的Webface-OCC数据集。这一改进对于提高模型在面对遮挡时的人脸识别性能具有显著帮助。

以下是Webface-OCC数据集的示例。与以往使用方块随机遮挡人脸的方法不同,我们在Webface-OCC中采用了口罩和太阳镜等更符合实际情境的遮挡物,这些是人们在日常生活中经常遇到的。

Webface-OCC提供了多种类型的(a)纹理/颜色和(b)口罩/太阳镜,具体如下所示。然后,我们从未经遮挡的正常图像中提取了面部特征点。

接下来,利用这些面部特征点,我们通过精确地将口罩映射到覆盖口鼻区域,将太阳镜映射到覆盖眼睛区域,并调整它们的角度和大小,生成了一系列带有遮挡的人脸图像。

通过这种方式,我们增加了数据集的多样性,使得数据集包含了多种遮挡类型的组合。最终,Webface-OCC数据集包含了10,575个不同个体的804,704张人脸图像。
此外,数据集中每个ID都包含了正常和遮挡状态下的人脸图像,且两者数量相等,如下所示。

3.测试实验

Webface-OCC训练的模型在两种不同情境下进行了评估:

  1. 一般人脸识别:使用了Labeled Faces in the Wild (LFW)、Celebrity Frontal-Profile in the Wild (CFP-FP) 和 AgeDB-30 数据集进行评估。
  2. 遮挡人脸识别:使用了最新提出的LFW-mask、CFP-FP-mask、AgeDB-30-mask 和 Real-World Masked Face Dataset (RMFRD) 进行评估。

LFW-mask、CFP-FP-mask 和 AgeDB-30-mask 是在原始数据集的基础上添加了遮挡物,这些数据集在图像数量和比例上与原始数据集保持一致,没有变化。

评估所用的模型基于六种具有代表性的人脸识别架构:CenterFace、SphereFace、FaceNet、CosFace、ArcFace 和 MaskNet。特别地,FaceNet 和 ArcFace 还在 WiderFace 数据集上进行了重新训练,以进一步验证其性能。

评估结果显示,由于人脸方向和年龄差异的影响,CFP-FP 和 AgeDB-30 的准确率显著低于 LFW。然而,使用 Webface-OCC 训练的模型与原始模型相比,准确率仅下降了大约 1%,表明这些模型在一般人脸识别数据集上的整体表现仍然较高。

模型性能比较图

此外,重新训练的模型(特别是 FaceNet 和 ArcFace)在性能上明显优于原始模型。例如,ArcFace 在四个遮挡人脸识别数据集(LFW-mask、CFP-FP-mask、AgeDB-30-mask 和 RMFRD)上的准确率比原始模型分别提高了 36.22%、29.14%、27.04% 和 15.03%。

换言之,重新训练的模型在显著提升对遮挡人脸识别数据集的性能的同时,保持了对一般人脸识别数据集的高准确率。

与模拟遮挡的人脸识别数据集(LFW-mask、CFP-FP-FP-mask 和 AgeDB-30-mask)相比,真实遮挡的人脸识别数据集(RMFRD)的识别精度较低。这可能是由于 RMFRD 中遮挡物的未知性,或者是因为被试者是公众人物,他们可能会故意伪装,以隐藏自己的身份。

4.总结

本文介绍了一个新的公共数据集,专为闭塞感知人脸识别而设计。与传统的合成遮挡方法相比,我们采用了一种创新的面部特征点映射技术来合成遮挡物,这种方法更贴近现实世界的应用场景。我们提出了一种综合的遮挡合成方法,它能够更真实地模拟实际中的遮挡情况。

通过将此方法应用于现有的Webface数据集,我们成功构建了一个包含大规模遮挡图像的公共数据集。此外,我们在该数据集上对ArcFace模型进行了重新训练,结果表明,重新训练后的模型在LFW-Mask和RMFRD数据集上分别达到了97.08%和78.25%的高准确率。

据NIST等多个国际权威机构的报告,传统人脸识别模型在口罩遮挡下的准确率会有显著下降。我们预计,Webface-OCC的推出将为人脸识别领域带来一个规模更大、更多样化、更精确的遮挡人脸识别数据集,从而显著提升人脸识别模型的准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/17930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dalle2学习

Dalle2 mini有GitHub库并且有网页可以直接测试

网络之再谈体系结构

大家都知道的是网络的体系结构,现代软件常用的体系结构无非是TCP/IP协议栈,OSI因为实现复杂并且效率没有TCP/IP协议栈好,所以不用OSI,但是,最近在复习网络知识的时候,发现了一些奇怪的地方,那就…

C/C++连接MySQL

本章Gitee仓库地址:mysql连接基本操作 文章目录 1. mysql connect库2. mysql相关接口2.1 mysql_init()2.2 mysql_real_connect()2.3 mysql_query()2.4 mysql_store_result()2.41 mysql_num_rows2.42 mysql_num_fields2.43 mysql_fetch_row2.44 mysql_fetch_fields 2…

中国上市企业行业异质性数据分析

数据简介:企业行业异质性数据是指不同行业的企业在运营、管理、财务等方面的差异性数据。这些数据可以反映不同行业企业的特点、优势和劣势,以及行业间的异质性对企业经营和投资的影响。通过对企业行业异质性数据的分析,投资者可以更好地了解…

STM32系列-STM32介绍

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” STM32介绍 STM32介绍 ST:指的是意法半导体 M:指定微处理器 32:表示计算机处理器位数 ARM分成三个系列: Cortex-A&#xff1…

Python读取Excel表格文件并绘制多列数据的曲线图

本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。 首先,我们来明确一下本文的需求。现有一个.csv格式的Excel表格文件,其第一列为…

爬山算法详解

爬山算法详解 背景 爬山算法(Hill Climbing Algorithm)是一种基于启发式搜索的优化算法,用于在搜索空间中寻找局部最优解。该算法的基本思想是从一个初始解出发,通过不断移动到邻域内更优的解来寻找最优解,直至无法找…

Flutter 中的 Flow 小部件:全面指南

Flutter 中的 Flow 小部件:全面指南 Flutter 的 Flow 是一个功能强大的布局小部件,它允许开发者在父组件的任意位置放置子组件。Flow 可以通过使用 FlowDelegate 完全自定义子组件的布局,这为创建复杂的自定义布局提供了极大的灵活性。本文将…

Sqoop的安装与测试

这里写目录标题 什么是Sqoop?Sqoop的安装与配置安装测试 什么是Sqoop? Sqoop就是hadoop和mysql的一个中间介质 , 作用就是可以将hadoop中的数据传到mysql中 , 或将mysql中的数据导入到hadoop中 Sqoop的安装与配置 安装 详细代码 //解压安装 [roothadoop soft]# tar -zxv…

【如何在Qt C++中使用SSL和TLS加密传输数据?】

在Qt C++中使用SSL和TLS加密传输数据,一般步骤如下: 准备工作: 确保您的Qt项目已经链接了网络模块(QT += network)和SSL模块(QT += ssl)。 步骤: 创建QNetworkRequest对象:使用QNetworkRequest对象指定要访问的URL。 创建QNetworkAccessManager对象:使用QNetworkA…

【漏洞复现】用友NC registerServlet JNDI 远程代码执行漏洞(XVE-2024-10248)

0x01 产品简介 用友NC是 用友软件股份有限公司开发的一套企业级管理软件系统。它是一个基于互联网的多层应用系统,旨在为中大型企业提供全面、集成的管理解决方案。是一种商业级的企业资源规划云平台,为企业提供全面的管理解决方案,包括财务…

深度学习中的梯度消失和梯度爆炸问题

在深度学习领域,随着模型层数的增加,我们常常会遇到两个棘手的问题:梯度消失(Vanishing Gradients)和梯度爆炸(Exploding Gradients)。这两个问题严重影响了深度神经网络的训练效率和性能。本文…

SwiftUI中EnvironmentObject的使用(多界面共享数据)

SwiftUI的EnvironmentObject是一个强大的工具,它允许你在多个视图之间共享数据(使用一个可观察对象)。当你有一个复杂的视图层次结构,并且需要在没有直接连接的视图之间共享相同的可观察对象时,它特别有用。 我们之前传递数据主要是通过init…

Nginx R31 doc-16-logging 配置日志

前言 大家好,我是老马。很高兴遇到你。 我们为 java 开发者实现了 java 版本的 nginx https://github.com/houbb/nginx4j 如果你想知道 servlet 如何处理的,可以参考我的另一个项目: 手写从零实现简易版 tomcat minicat 手写 nginx 系列 …

SOLIDWORKS正版一年多少钱 2024版报价

SOLIDWORKS软件作为一款优秀的三维设计工具,以其强大的功能和优质的设计工具,为设计师们提供了前所未有的便利。SOLIDWORKS三维设计软件是一款多科学集成软件,它在产品开发和制造方面发挥着重要作用。 作为整个SOLIDWORKS产品开发解决方案套件…

SQL使用函数给多个分表添加同一字段

数据库中分表时,往往需要向多个分表中添加同一个字段,可以定义一个函数,每次调用这个函数向多个份表中添加同意字段。 1、创建函数示例: 在PostgreSQL中创建一个简单的函数 以下是一个在PostgreSQL中创建函数的简单示例&#x…

kotlin基础之高阶函数

Kotlin中的高阶函数、内联函数以及noinline和crossinline关键字是函数式编程中的重要概念。下面我将逐一解释这些概念的定义、实现原理、使用场景以及noinline和crossinline关键字的具体用法。 高阶函数 定义:高阶函数是接受一个或多个函数作为参数,或…

android上用QT实现绘制曲线及双指放大缩小

Android上用QT绘制曲线有多个绘图库可用,比如QCustomPlot,Qwt,Qchart,但经过博主测试在Android上并不是每种库都能满足要求,本文会进行三者对比,并给出一个android上可以实现双指滑动和放大缩小的具体解决方案及代码示例。 一.三种QT绘图库介绍 1.QCustomPlot在windows系统…

如何修改 Kafka 消息保留时长:经验总结

如何修改 Kafka 消息保留时长:经验总结 引言 Apache Kafka 是一种高性能的分布式消息系统,用于处理实时数据流。在实际使用中,我们可能需要根据业务需求调整 Kafka 消息的保留时长。本文将介绍如何修改 Kafka 消息保留时长,并分…

SEO之核心关键词(二)

初创企业或者需要建站的朋友看以下两篇文章,谢谢支持: 我给不会敲代码又想搭建网站的人建议新手上云 (接上一篇。。。。) 4、查询搜索次数 经过自己及朋友、同事的头脑风暴和检查竞争对手网站之后,再到Google 关键词…