用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点)

为了测试 Adam、RMSProp 和 Adagrad 算法的性能,你可以使用四个凸函数进行实验。以下是一些常用的凸函数示例:

  1. Rosenbrock 函数:

    Rosenbrock函数

  2. Booth 函数:

    Booth函数

  3. Himmelblau 函数:

    Himmelblau函数

  4. Beale 函数:

    Beale函数

你可以选择其中一个或多个函数来测试算法的性能。对于每个函数,你可以使用不同的初始点,并应用 Adam、RMSProp 和 Adagrad 算法来寻找最优点。最优点可以通过达到较低的函数值或满足预定精度条件来定义。

在实验过程中,你可以记录每个算法在不同函数和初始点上找到最优点的迭代次数、计算时间以及最终的函数值。通过比较这些指标,你可以评估每个算法的性能和效果。

请注意,算法的性能可能会因函数的形状和参数设置而有所不同。因此,建议你在不同的凸函数上进行多次实验,以获得更全面的性能比较结果。

#include <iostream>
#include <cmath>
#include <vector>// 定义凸函数类
class ConvexFunction {
public:virtual double evaluate(const std::vector<double>& x) = 0;
};// Rosenbrock 函数
class RosenbrockFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double sum = 0.0;for (size_t i = 0; i < x.size() - 1; ++i) {double term1 = pow(x[i + 1] - pow(x[i], 2), 2);double term2 = pow(1 - x[i], 2);sum += 100 * term1 + term2;}return sum;}
};// Booth 函数
class BoothFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(x[0] + 2 * x[1] - 7, 2);double term2 = pow(2 * x[0] + x[1] - 5, 2);return term1 + term2;}
};// Himmelblau 函数
class HimmelblauFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(pow(x[0], 2) + x[1] - 11, 2);double term2 = pow(x[0] + pow(x[1], 2) - 7, 2);return term1 + term2;}
};// Beale 函数
class BealeFunction : public ConvexFunction {
public:double evaluate(const std::vector<double>& x) override {double term1 = pow(1.5 - x[0] + x[0] * x[1], 2);double term2 = pow(2.25 - x[0] + x[0] * pow(x[1], 2), 2);double term3 = pow(2.625 - x[0] + x[0] * pow(x[1], 3), 2);return term1 + term2 + term3;}
};// Adam 算法
std::vector<double> adam(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> m(x.size(), 0.0);std::vector<double> v(x.size(), 0.0);double beta1 = 0.9;double beta2 = 0.999;double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {m[j] = beta1 * m[j] + (1 - beta1) * gradient[j];v[j] = beta2 * v[j] + (1 - beta2) * pow(gradient[j], 2);double m_hat = m[j] / (1 - pow(beta1, i + 1));double v_hat = v[j] / (1 - pow(beta2, i + 1));x[j] -= learning_rate * m_hat / (sqrt(v_hat) + epsilon);}}return x;
}// RMSProp 算法
std::vector<double> rmsprop(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, double decay_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> cache(x.size(), 0.0);double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {cache[j] = decay_rate * cache[j] + (1 - decay_rate) * pow(gradient[j], 2);x[j] -= learning_rate * gradient[j] / (sqrt(cache[j]) + epsilon);}}return x;
}// Adagrad 算法
std::vector<double> adagrad(const ConvexFunction& func, const std::vector<double>& initial_x, double learning_rate, int max_iterations) {std::vector<double> x = initial_x;std::vector<double> cache(x.size(), 0.0);double epsilon = 1e-8;for (int i = 0; i < max_iterations; ++i) {// 计算梯度std::vector<double> gradient(x.size(), 0.0);for (size_t j = 0; j < x.size(); ++j) {std::vector<double> x_plus_delta = x;x_plus_delta[j] += epsilon;double f_plus_delta = func.evaluate(x_plus_delta);gradient[j] = (f_plus_delta - func.evaluate(x)) / epsilon;}// 更新参数for (size_t j = 0; j < x.size(); ++j) {cache[j] += pow(gradient[j], 2);x[j] -= learning_rate * gradient[j] / (sqrt(cache[j]) + epsilon);}}return x;
}int main() {// 创建凸函数对象RosenbrockFunction rosenbrock;BoothFunction booth;HimmelblauFunction himmelblau;BealeFunction beale;// 设置算法参数double learning_rate = 0.01;double decay_rate = 0.9;int max_iterations = 1000;// 初始化初始点std::vector<double> initial_x = { 0.0, 0.0 };// 使用 Adam 算法找到最优点std::vector<double> adam_result = adam(rosenbrock, initial_x, learning_rate, max_iterations);std::cout << "Adam Result: (" << adam_result[0] << ", " << adam_result[1] << ")" << std::endl;// 使用 RMSProp 算法找到最优点std::vector<double> rmsprop_result = rmsprop(rosenbrock, initial_x, learning_rate, decay_rate, max_iterations);std::cout << "RMSProp Result: (" << rmsprop_result[0] << ", " << rmsprop_result[1] << ")" << std::endl;// 使用 Adagrad 算法找到最优点std::vector<double> adagrad_result = adagrad(rosenbrock, initial_x, learning_rate, max_iterations);std::cout << "Adagrad Result: (" << adagrad_result[0] << ", " << adagrad_result[1] << ")" << std::endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/16328.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生命在于学习——Python人工智能原理(1.2)

一、人工智能的基本知识 6、新一代人工智能驱动因素 &#xff08;1&#xff09;数据量爆发性增长。 &#xff08;2&#xff09;计算能力大幅提升 &#xff08;3&#xff09;深度学习等算法发展 &#xff08;4&#xff09;移动AI创新应用牵引 7、人工智能关键技术 &#x…

eletron入门教程 -- 快速写一个electron demo程序

1、前言 由于工作需要&#xff0c;前段时间基于electron框架开发了一个桌面应用程序。由于我之前主要是做c后端开发&#xff0c;所以没有任何electron基础&#xff0c;也没有任何前端开发基础&#xff0c;但是没有办法&#xff0c;老板需要&#xff0c;那就得会&#xff0c;不会…

前端开发工程师——数据可视化

canvas canvas绘制线段 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthd…

如何使用KNN

导入文件和库 加载数据集、拆分数据集 训练模型 预测 打印结果

自从有了可观测性,传统运维如何进行提升?

在 201x 年&#xff0c;随着容器技术的出现&#xff0c;容器的部署方式逐渐被各大互联网公司采用&#xff0c;相比物理机/虚拟机&#xff0c;容器的好处是环境隔离、轻量、快速。 但是管理容器是一件复杂的事情&#xff0c;后来出现了 Kubernetes&#xff0c;成为了事实上的容…

加拿大门户媒体《金融邮报》《埃德蒙顿日报》新闻媒体投放

介绍 加拿大媒体广告投放是企业宣传推广的重要手段之一。在加拿大&#xff0c;主流媒体包括《金融邮报》和《埃德蒙顿日报》。《金融邮报》是加拿大唯一的全国性英文金融日报&#xff0c;总部位于多伦多&#xff0c;具有丰富的金融消息资源&#xff0c;可反映加拿大商界各方面…

Oracle实践|内置函数之日期与时间函数

&#x1f4eb; 作者简介&#xff1a;「六月暴雪飞梨花」&#xff0c;专注于研究Java&#xff0c;就职于科技型公司后端工程师 &#x1f3c6; 近期荣誉&#xff1a;华为云云享专家、阿里云专家博主、腾讯云优秀创作者、ACDU成员 &#x1f525; 三连支持&#xff1a;欢迎 ❤️关注…

五分钟”手撕“异常

目录 一、什么是异常 二、异常的体系和分类 三、异常的处理 1.抛出异常 2.异常的捕获 异常声明throws&#xff1a; try-catch处理 四、finally finally一定会被执行吗&#xff1f; 五、throw和throws区别 六、异常处理的流程 七、自定义异常 一、什么是异常 顾名…

大模型额外篇章二:基于chalm3或Llama2-7b训练酒店助手模型

文章目录 一、代码部分讲解二、实际部署步骤(CHALM3训练步骤)1)注册AutoDL官网实名认证2)花费额度挑选GPU3)准备实验环境4)开始执行脚本5)从浏览器访问6)可以开始提问7)开始微调模型8)测试训练后的模型三、基于Llama2-7b的训练四、额外补充1)修改参数后2)如果需要访问…

PHP:open_basedir restriction in effect.

当我们下载了组件&#xff0c;引入的时候出现 open_basedir restriction in effect&#xff0c;那这个时候我们该怎么弄呢&#xff1f; 首先我们进入宝塔管理页面&#xff1a;【软件商店】-【运行环境】-【安装PHP】-【设置】 其中后面的路径是用 : 来分隔表示多少个&#xff…

指纹识别系统架构

目录 1. 系统架构 1.1 指纹采集模块 1.2 指纹处理模块 1.3 指纹登记模块 1.4 指纹识别模块 1.5 指纹识别决策模块 1.6 管理模块 1.6.1 存储管理 1.6.2 传输管理 1.6.3 安全管理 1.7 应用开放功能 1.7.1 指纹登记功能 1.7.2 指纹验证功能 1.7.3 指纹辨识功能 2. …

Android Studio制作简单登录界面

Android Studio制作简单登录界面 实现目标 应用线性布局设计登录界面&#xff0c;要求点击输入学号时弹出数字键盘界面&#xff0c;点击输入密码时弹出字母键盘&#xff0c;出现的文字、数字、尺寸等全部在values文件夹下相应.xml文件中设置好&#xff0c;使用时直接引用。当…

蓝桥杯物联网竞赛_STM32L071KBU6_关于size of函数产生的BUG

首先现象是我在用LORA发送信息的时候&#xff0c;左边显示长度是8而右边接收到的数据长度却是4 我以为是OLED显示屏坏了&#xff0c;又或者是我想搞创新用了const char* 类型强制转换数据的原因&#xff0c;结果发现都不是 void Function_SendMsg( unsigned char* data){unsi…

【云原生】Kubernetes基础命令合集

目录 引言 一、命令概述 &#xff08;一&#xff09;命令分类 &#xff08;二&#xff09;基本语法 二、查看基本信息 &#xff08;一&#xff09;环境指令 1.查看版本信息 2.查看资源对象简写 3.添加补全信息 4.查看日志 5.查看集群信息 &#xff08;二&#xff0…

数据结构(三)

数据结构&#xff08;三&#xff09; 图状关系顺序存储链式存储十字链表法多重链表法 图的遍历佛洛依德算法迪杰斯特拉算法洪水算法 图状关系 按有无方向分&#xff1a;有向图、无向图 按是否有权值&#xff1a;带权图、不带权图 顺序存储 链式存储 十字链表法 多重链表法 图…

【笔记】软件架构师要点记录(2)

【笔记】软件架构师要点记录 20240523案例一案例二案例三案例四案例五案例六案例七案例十 20240523 基于前10个架构案例场景&#xff0c;对用到的专业术语进行整理&#xff0c;方便后续查看。 案例一 MVC架构风格组件交互方式 MVC是一种用来构建用户界面时采用的架构设计风格…

攻防世界[GoodRe]

攻防世界[GoodRe] 学到知识&#xff1a; 逆向的精髓&#xff1a;三分懂&#xff0c;七分蒙。TEA 算法快速识别&#xff08;蒙&#xff09;&#xff1a; 数据处理的形式&#xff1a;进入加密时的数据和加密结束后的数据&#xff0c;处理时数据的分组等等&#xff0c;都能用来…

使用libtorch加载YOLOv8生成的torchscript文件进行目标检测

在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集&#xff0c;使用 LabelMe 工具进行标注&#xff0c;然后使用 labelme2yolov8 脚本将json文件转换成YOLOv8支持的.txt文件&#xff0c;并自动生成YOLOv8支持的目录结构&#xff0c;包括melon.yaml文件&#xff0c;其内容…

VMware虚拟机如何与主机共享文件夹

本机:WIN10 VMware虚拟机:WIN7 因为每次配置都爱忘记操作,目标是为了在WIN7虚拟机中可以访问本机文件 首先本机操作 新建一个共享文件夹,不带中文目录(最好不要) 点击共享 选择everyone,记得权限"读取和写入" 然后到虚拟机里面 添加一个网络位置 点击浏览,选择网…

第一节:Redis的数据类型和基本操作

最近整理了关于Redis的一些文档&#xff0c;分享给大家&#xff0c;后续会持续更新...... Redis的数据类型 字符串String String&#xff1a;字符串&#xff0c;可以存储String、Integer、Float型的数据&#xff0c;甚至是二进制数据&#xff0c;一个字符串最大容量是512M 列表…