毕设 大数据校园卡数据分析

文章目录

  • 0 前言
  • 1 课题介绍
  • 2 数据预处理
    • 2.1 数据清洗
    • 2.2 数据规约
  • 3 模型建立和分析
    • 3.1 不同专业、性别的学生与消费能力的关系
    • 3.2 消费时间的特征分析
  • 4 Web系统效果展示
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于yolov5的深度学习车牌识别系统实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:见文末



1 课题介绍

近年来,大数据的受关注程度越来越高。如何对大数据流进行抽取转换成有用的信息并应用于各行各业变得越来越重要。如今,校园一卡通系统在高校应用十分广泛,大部分高校主要利用校园一卡通对校园中的各类消费阅、补助领取等进行统一管理。通过数据分析算法,对大学生校内消费记录进行整理、分类、预测,从而整体反应学生在校消费情况,形成量化的评判标准,同时也为今后的贫困生资助管理工作提供可靠的数据支持,辅助完成贫困生的相关工作。


2 数据预处理

在进行数据挖掘或者数据分析之前,需要对“脏数据” 数据进行数据预处理,一般采用数据清理、数据集成、数据变换等方式,已获得更好的分析效果。


2.1 数据清洗

由于数据库中有着大量的数据表,我们获取到的数据表中会存在着异常数据,如数据不合法与常识不符,同一个字段属性值来源于多张数据表且数值不一样等。数据预处理主要去处可忽略的字段、忽略空缺记录、可处理噪声的数据、可删除的数据等。由于部分校园卡用户,如教职工、研究生等,消费时具有很强的随机性和离散型。同时,为了保护隐私,对姓名、学号等属性要做脱敏和隐私处理。


2.2 数据规约

预处理后的数据不一定适合直接使用,因此需要对数据进行集成和变换,将多个数据库中提取出的数据项整合到一起,组成新的数据集环境,并经过详细对比和筛选解决数据不一致和数据冗余等问题。为了适合分析,我们要对数据进行离散化和概念分层处理。


3 模型建立和分析

通过建立消费数据分析模型,对学校校园卡消费行为进行分析,总结学校学生消费特征,对不同消费类型的学生进行用户画像和分类。以学生的“性别”、“专业”分类作为横向分类,以“消费能力(金额)”,“消费项目”,“消费时间”和“消费地点”四个方面为纵向分类,组成分析模型。寻找消费特征进行进行总结,形成假设结论。

#1.总体消费情况
#2.不同专业、性别的学生与消费能力的关系
#3.不同性别的学生与消费项目的关系
#4.消费时间的特征分析
#5.消费地点与门禁通过地点的关系分析
#6.学生消费特征分层模型
import matplotlib.pyplot as plt
expen_rec = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\expen_rec.csv',encoding='gbk')
student = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\student.csv',encoding='gbk')
access = pd.read_csv(r'C:\Users\River\Desktop\校园卡数据\access.csv',encoding='gbk')
all_data1 = pd.merge(expen_rec,student,on ='校园卡号',how='left')
all_data1.head()

在这里插入图片描述


3.1 不同专业、性别的学生与消费能力的关系

from pylab import *
plt.rcParams['font.sans-serif']=['SimHei']
%matplotlib inline
total = con_sum.groupby(['性别'])[['消费金额']].sum()
total1= con_sum.groupby(['性别'])[['消费金额']].count()
plt.subplot(121)
plt.pie(total['消费金额'],labels=total.index,autopct='%2.f%%')
plt.title('男女生消费总金额对比')
plt.subplot(122)
plt.pie(total1['消费金额'],labels=total1.index,autopct='%2.f%%')
plt.title('男女生人数对比')
plt.show()

在这里插入图片描述

fig1 = plt.figure(num =1, figsize=(8,4))
plt.title('各消费等级人数')
plt.xlabel('消费等级')
x1 =['(0, 100] ','(100, 150]','(150, 200] ','(200, 250]','(250, 300]','(300, 350]','(350, 400]','(400, 500]','(500, 3000]']
y1 = list(table1.values)
y2 =list(table2.loc[('女',slice(None))].values)
y3 =list(table2.loc[('男',slice(None))].values)
plt.plot(x1,y1,label='总体')
plt.plot(x1,y2,label='女生')
plt.plot(x1,y3,label='男生')
plt.legend(loc=2)
plt.show()

在这里插入图片描述

#分析各专业总消费金额排列
fig2 = plt.figure(num =2, figsize=(14,6))
plt.title('各专业总消费金额排列')
plt.xlabel('专业名称')
x1=table3.index
y1=table3['消费总金额']
plt.bar(x1,y1)
plt.xticks(x1,x1,rotation=45)
for a,b in zip(x1,y1):plt.text(a, b+0.05, '%.0f' % b, ha='center', va= 'bottom',fontsize=9)
plt.show()

在这里插入图片描述

小结:

1.该校18级学生的人均每月校园卡消费295.96元;

2.女生人数占比59%,总消费额占比56%,消费总金额与性别差异不大;

3.从消费金额级区间上看,学生的总体消费金额主要在[200,500]的区间内,但男女生消费存在明显差异:女生消费金额在[200-350]区间内人数明显高于男生,但随着增加而下降,而男生在400以上的区间内的人数高于女生。男生对校园卡消费方式差异较大,一般不使用或者经常使用。女生多数选择轻度使用。

4.从各专业消费总金额上看机械制造专业最高,机械制造(学徒)专业最低。但结合各专业的人均消费分析,各专业的人均消费差异很小,标准差仅为42.8。人均消费最高的机械制造(学徒)专业因为人数最少仅为14人,对总体数据影响较小。可以得出:学生的校园卡消费能力与专业无明显区别。


3.2 消费时间的特征分析

fig7 = plt.figure(num =7, figsize=(8,4))
mon1= time_tab.groupby(['日期'])[['消费金额']].count()
mon2= time_tab1.groupby(['日期'])[['消费金额']].count()
mon3= time_tab2.groupby(['日期'])[['消费金额']].count()
plt.title('月度消费次数趋势分析')
plt.xlabel('日期')
x1 = list(mon1.index)
y1 = list(mon1.values)
y2 =list(mon2.values)
y3 =list(mon3.values)
plt.plot(x1,y1,label='总体')
plt.plot(x1,y2,label='女生')
plt.plot(x1,y3,label='男生')
plt.legend(loc=2)
plt.show()
#除个别天数外,女生均高于男生,每周之间趋势相似

在这里插入图片描述

fig8 = plt.figure(num =8, figsize=(8,4))
wk1= time_tab.groupby(['星期'])[['消费金额']].count()
wk2= time_tab1.groupby(['星期'])[['消费金额']].count()
wk3= time_tab2.groupby(['星期'])[['消费金额']].count()
def autolabel(rects):for rect in rects:height = rect.get_height()plt.text(rect.get_x()+rect.get_width()/2.-0.2, 1.03*height, '%s' % float(height))
plt.title('月度消费次数趋势分析')
plt.xlabel('星期')
y1 = wk2['消费金额']
y2 = wk3['消费金额']
x1=range(len(y1))
x2=[i +0.35 for i in x1]
a=plt.bar(x1,y1, width=0.3,label='女生',color='blue')
b=plt.bar(x2,y2, width=0.3,label='男生',color='green')
autolabel(a)
autolabel(b)
plt.legend()
plt.xticks(x1,list(wk1.index),rotation=45)
plt.show()
#周一至周三消费次数较高,男女生在一周内的消费频率的波动没有明显差异

在这里插入图片描述

1.从一个月的每天的消费次数上看,除个别天数男女生消费次数相近,多大多数天数的女生的消费次数高于男生,且每周之间趋势相似,可以得出学生日常的消费习惯比较稳定;

2.从每周的消费次数汇总上看,周一至周三消费次数较高,并且逐步下降,周末为消费次数最低的时候。男女生在一周内的消费频率的波动趋势相同,没有明显差异;

3.从每天的消费的时间段分析上看,周末的刷卡消费次数为平常的12%。食堂可以根据数据情况,适当安排休息,减少人力成本浪费;

4.平常时间的早、中、晚餐的用餐时间集中在7点、11点、17-18点时间段。周末消费的时间相对平缓,早餐的高峰时间会延后到8点时间段,且持续有人员消费,中餐的用餐时间也会有部分后延到12点的时间段。晚餐时间则会部分提前17点的时间段进行,需要提前做好食堂的准备事项。


4 Web系统效果展示

以上是校园卡分析的部分过程,我们还可以做成web系统来展示。效果如下:

4.平常时间的早、中、晚餐的用餐时间集中在7点、11点、17-18点时间段。周末消费的时间相对平缓,早餐的高峰时间会延后到8点时间段,且持续有人员消费,中餐的用餐时间也会有部分后延到12点的时间段。晚餐时间则会部分提前17点的时间段进行,需要提前做好食堂的准备事项。

Web系统效果展示

以上是校园卡分析的部分过程,我们还可以做成web系统来展示。效果如下:

在这里插入图片描述

在这里插入图片描述

🧿 选题指导, 项目分享:见文末


5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/15734.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

职场不是挣钱

职场怎么不是挣钱? 曾经我也一直这么想,只要做好老板安排的事情,自然就可以挣到钱了。 目的应该是没错的,是挣钱。 只是做好活就能挣钱,好像想得有些简单了。 毕竟每个人都在干活,为什么就该自己挣钱呢&a…

【vue2配置】Vue Router

Vue Router官网 1、npm install vue-router4 2、创建模块,在src目录小创/views/map/MapIndex.vue模块和创router/index.js文件 3、在router/index.js配置路由 import Vue from "vue"; import Router from "vue-router"; // 引入模块 const Ma…

C语言——在头⽂件中#if、_STDC_等字⾏起什么作⽤?

一、问题 通常,⼀些程序员都不会去研究头⽂件中的内容是什么含义,总觉得乱乱的,有很多 #if、_STDC_、#line 等字符,那么这些字符都各代表什么呢,在头⽂件中又起到什么作⽤呢? 二、解答 在头⽂件中存在类似…

智慧校园建设的进阶之路

智慧校园的建设现已到达了老练的阶段,许多学校设备充满着数字化信息,进出宿舍楼,校园一卡通体系会记载下学生信息,外来人员闯入会报警,翻开电脑就能查到学生是否在宿舍等……学生的学习和日子都充满了数字化的痕迹。但…

C# WPF入门学习(三)

目录 核心架构 核心组件和概念 1. XAML(eXtensible Application Markup Language) 2. 依赖属性(Dependency Properties) 3. 路由事件(Routed Events) 4. 数据绑定 5. 命令(Commands&…

itertools内置模块的过滤妙用

itertools内置模块的妙用 过滤源迭代器中的元素 Python内置itertools模块里有一些函数可以过滤源迭代器中的元素。 islice islice可以在不拷贝数据的前提下,按照下标切割源迭代器。可以只给出切割的终点,也可以同时给出起点和终点,还可以…

MongoDB 覆盖索引查询:提升性能的完整指南

MongoDB 覆盖索引查询是一种优化数据库查询性能的技术,它通过创建适当的索引,使查询可以直接从索引中获取所需的数据,而无需访问实际的文档数据。这种方式可以减少磁盘 I/O 和内存消耗,提高查询性能。 基本语法 在 MongoDB 中&a…

SQL练习题:2.4

建表 # 学生表 create table t_student (stu_id varchar(10),stu_name varchar(10),stu_age datetime,stu_sex varchar(10) );# 课程表 create table t_t_course (c_id varchar(10),c_name varchar(10),c_teaid varchar(10) );# 教师表 create table t_t_teacher (tea…

光速入门python的OpenCV

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文整理python的OpenCV模块的关键知识点 争取用最短的时间入门OpenCV 并且做到笔记功能直接复制使用 OpenCV简介 不浪费时间的介绍: 就是类似于ps操作图片。 至于为什么不直接用ps,因为只有程序能…

【找出满足差值条件的下标 I】python

目录 暴力题解 优化:滑动窗口维护大小值 暴力题解 class Solution:def findIndices(self, nums: List[int], indexDifference: int, valueDifference: int) -> List[int]:nlen(nums)for i in range(n):for j in range(n-1,-1,-1):if abs(i-j)>indexDiffere…

海康威视NVR通过ehome协议接入视频监控平台,视频浏览显示3011超时错误的问题解决,即:The request timeout! 【3011】

目录 一、问题描述 二、问题分析 2.1 初步分析 2.2 查看日志 2.3 问题验证 1、查看防火墙 2、查看安全组 3、问题原因 三、问题解决 3.1 防火墙开放相关端口 3.2 安全组增加规则 3.3 测试 1、TCP端口能够联通的情况 2、TCP端口不能够联通的情况 四、验证 五、云…

「51媒体」如何与媒体建立良好关系?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 与媒体建立良好关系对于企业或个人来说都是一项重要的公关活动。 了解媒体:研究媒体和记者的兴趣,提供相关且有价值的信息。 建立联系:通过专业的方式…

牛客NC324 下一个更大的数(三)【中等 双指针 Java/Go/PHP/C++】参考lintcode 52 · 下一个排列

题目 题目链接: https://www.nowcoder.com/practice/475da0d4e37a481bacf9a09b5a059199 思路 第一步:获取数字上每一个数,组成数组arr 第二步:利用“下一个排列” 问题解题方法来继续作答,步骤:利用lintc…

C++进阶之路:何为拷贝构造函数,深入理解浅拷贝与深拷贝(类与对象_中篇)

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

PostgreSQL基础(三):PostgreSQL的基础操作

文章目录 PostgreSQL的基础操作 一、用户操作 二、权限操作 三、操作任务

DRM驱动(五)之drm_atomic_state

上节讲到《DRM驱动(四)之ADD_FB》调用drmModeAddFB创建drm_framebuffer。然后通过 drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &map); vaddr mmap(0, create.size, PROT_READ | PROT_WRITE,MAP_SHARED, fd, map.offset); 将物理地址map到用户空间后…

Python中list遍历的几种方式之没有好与不好,只有合适不合适

Python中list遍历的几种方式 引言 Python是一种动态、解释型的高级编程语言,以其简洁、易读的语法而广受欢迎。在Python中,list是一种非常重要的数据结构,它允许存储一系列的元素,这些元素可以是任何类型。遍历list是处理数据的…

nginx的Connection refused

问题描述 nginx的错误日志中突然出现大量的的Connection refused问题,日志如下: 2020/03/19 09:52:53 [error] 20117#20117: *7403411764 connect() failed (111: Connection refused) while connecting to upstream, client: xxx.xxx.xxx.xxx, server:…

解决CLion调试时无法显示变量值的问题

1 问题描述 使用CLion的时候,调试时无法显示变量的值,例如: 图来自StackOverflow。 2 解决办法 可以尝试切换调试器解决,在Linux下,CLion支持GDB和LLDB,如果GDB不行,可以切换到LLDB。 切换方…

医院信息化IT监控一体化运维实践

作者: 晓风 在医疗信息化日益发展的今天,医院数据中心的运维工作显得尤为重要。为了确保医疗系统的稳定运行,保障患者数据的安全与完整,我院在信息化IT监控一体化运维方面进行了深入的探索和实践。 一、背景与挑战 我院的机房设备规模已有50…