深度学习之图像分割从入门到精通——基于unet++实现细胞分割

模型

import torch
from torch import nn__all__ = ['UNet', 'NestedUNet']class VGGBlock(nn.Module):def __init__(self, in_channels, middle_channels, out_channels):super().__init__()self.relu = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)self.bn1 = nn.BatchNorm2d(middle_channels)self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)self.bn2 = nn.BatchNorm2d(out_channels)def forward(self, x):out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)return outclass UNet(nn.Module):def __init__(self, num_classes, input_channels=3, **kwargs):super().__init__()nb_filter = [32, 64, 128, 256, 512]self.pool = nn.MaxPool2d(2, 2)self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)#scale_factor:放大的倍数  插值self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])self.conv2_2 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])self.conv1_3 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])self.conv0_4 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)def forward(self, input):x0_0 = self.conv0_0(input)x1_0 = self.conv1_0(self.pool(x0_0))x2_0 = self.conv2_0(self.pool(x1_0))x3_0 = self.conv3_0(self.pool(x2_0))x4_0 = self.conv4_0(self.pool(x3_0))x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1))x2_2 = self.conv2_2(torch.cat([x2_0, self.up(x3_1)], 1))x1_3 = self.conv1_3(torch.cat([x1_0, self.up(x2_2)], 1))x0_4 = self.conv0_4(torch.cat([x0_0, self.up(x1_3)], 1))output = self.final(x0_4)return outputclass NestedUNet(nn.Module):def __init__(self, num_classes, input_channels=3, deep_supervision=False, **kwargs):super().__init__()nb_filter = [32, 64, 128, 256, 512]self.deep_supervision = deep_supervisionself.pool = nn.MaxPool2d(2, 2)self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])self.conv0_2 = VGGBlock(nb_filter[0]*2+nb_filter[1], nb_filter[0], nb_filter[0])self.conv1_2 = VGGBlock(nb_filter[1]*2+nb_filter[2], nb_filter[1], nb_filter[1])self.conv2_2 = VGGBlock(nb_filter[2]*2+nb_filter[3], nb_filter[2], nb_filter[2])self.conv0_3 = VGGBlock(nb_filter[0]*3+nb_filter[1], nb_filter[0], nb_filter[0])self.conv1_3 = VGGBlock(nb_filter[1]*3+nb_filter[2], nb_filter[1], nb_filter[1])self.conv0_4 = VGGBlock(nb_filter[0]*4+nb_filter[1], nb_filter[0], nb_filter[0])if self.deep_supervision:self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)else:self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)def forward(self, input):# print('input:',input.shape)x0_0 = self.conv0_0(input)# print('x0_0:',x0_0.shape)x1_0 = self.conv1_0(self.pool(x0_0))# print('x1_0:',x1_0.shape)x0_1 = self.conv0_1(torch.cat([x0_0, self.up(x1_0)], 1))# print('x0_1:',x0_1.shape)x2_0 = self.conv2_0(self.pool(x1_0))# print('x2_0:',x2_0.shape)x1_1 = self.conv1_1(torch.cat([x1_0, self.up(x2_0)], 1))# print('x1_1:',x1_1.shape)x0_2 = self.conv0_2(torch.cat([x0_0, x0_1, self.up(x1_1)], 1))# print('x0_2:',x0_2.shape)x3_0 = self.conv3_0(self.pool(x2_0))# print('x3_0:',x3_0.shape)x2_1 = self.conv2_1(torch.cat([x2_0, self.up(x3_0)], 1))# print('x2_1:',x2_1.shape)x1_2 = self.conv1_2(torch.cat([x1_0, x1_1, self.up(x2_1)], 1))# print('x1_2:',x1_2.shape)x0_3 = self.conv0_3(torch.cat([x0_0, x0_1, x0_2, self.up(x1_2)], 1))# print('x0_3:',x0_3.shape)x4_0 = self.conv4_0(self.pool(x3_0))# print('x4_0:',x4_0.shape)x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1))# print('x3_1:',x3_1.shape)x2_2 = self.conv2_2(torch.cat([x2_0, x2_1, self.up(x3_1)], 1))# print('x2_2:',x2_2.shape)x1_3 = self.conv1_3(torch.cat([x1_0, x1_1, x1_2, self.up(x2_2)], 1))# print('x1_3:',x1_3.shape)x0_4 = self.conv0_4(torch.cat([x0_0, x0_1, x0_2, x0_3, self.up(x1_3)], 1))# print('x0_4:',x0_4.shape)if self.deep_supervision:output1 = self.final1(x0_1)output2 = self.final2(x0_2)output3 = self.final3(x0_3)output4 = self.final4(x0_4)return [output1, output2, output3, output4]else:output = self.final(x0_4)return output

损失函数

BCEDiceLoss:
  • 这个损失函数结合了二元交叉熵损失(Binary Cross Entropy, BCE)和 Dice Loss。
  • BCE 于衡量模型输出和真实标签之间的二值化像素级别匹配情况。
  • Dice Loss 用于量模型输出和真实标签之间的相似度,但这里采用了一种稍微不同的计算方式,即将 Dice Loss 作为 1 减去 Dice 相似度的平均值,这样得到的损失越小,说明相似度越高。
LovaszHingeLoss:
  • 这个损失函数采用的是 Lovasz-Hinge Loss,它是一种用于处理不平衡数据集的损失函数,尤其适用于像素级别的分类任务。
  • Lovasz-Hinge Loss 能够更好地处理类别不平衡和边界情况,相比于交叉熵损失,在处理不平衡数据时更加稳定。
    LovaszHingeLoss相关介绍
测试用例:

lovasz_losses.py 相关内容

"""
Lovasz-Softmax and Jaccard hinge loss in PyTorch
Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License)
"""from __future__ import print_function, divisionimport torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as nptry:from itertools import ifilterfalse
except ImportError:  # py3kfrom itertools import filterfalse as ifilterfalsedef lovasz_grad(gt_sorted):"""Computes gradient of the Lovasz extension w.r.t sorted errorsSee Alg. 1 in paper"""p = len(gt_sorted)gts = gt_sorted.sum()intersection = gts - gt_sorted.float().cumsum(0)union = gts + (1 - gt_sorted).float().cumsum(0)jaccard = 1. - intersection / unionif p > 1:  # cover 1-pixel casejaccard[1:p] = jaccard[1:p] - jaccard[0:-1]return jaccarddef iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True):"""IoU for foreground classbinary: 1 foreground, 0 background"""if not per_image:preds, labels = (preds,), (labels,)ious = []for pred, label in zip(preds, labels):intersection = ((label == 1) & (pred == 1)).sum()union = ((label == 1) | ((pred == 1) & (label != ignore))).sum()if not union:iou = EMPTYelse:iou = float(intersection) / float(union)ious.append(iou)iou = mean(ious)  # mean accross images if per_imagereturn 100 * ioudef iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False):"""Array of IoU for each (non ignored) class"""if not per_image:preds, labels = (preds,), (labels,)ious = []for pred, label in zip(preds, labels):iou = []for i in range(C):if i != ignore:  # The ignored label is sometimes among predicted classes (ENet - CityScapes)intersection = ((label == i) & (pred == i)).sum()union = ((label == i) | ((pred == i) & (label != ignore))).sum()if not union:iou.append(EMPTY)else:iou.append(float(intersection) / float(union))ious.append(iou)ious = [mean(iou) for iou in zip(*ious)]  # mean accross images if per_imagereturn 100 * np.array(ious)# --------------------------- BINARY LOSSES ---------------------------def lovasz_hinge(logits, labels, per_image=True, ignore=None):"""Binary Lovasz hinge losslogits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)per_image: compute the loss per image instead of per batchignore: void class id"""if per_image:loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))for log, lab in zip(logits, labels))else:loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))return lossdef lovasz_hinge_flat(logits, labels):"""Binary Lovasz hinge losslogits: [P] Variable, logits at each prediction (between -\infty and +\infty)labels: [P] Tensor, binary ground truth labels (0 or 1)ignore: label to ignore"""if len(labels) == 0:# only void pixels, the gradients should be 0return logits.sum() * 0.signs = 2. * labels.float() - 1.errors = (1. - logits * Variable(signs))errors_sorted, perm = torch.sort(errors, dim=0, descending=True)perm = perm.datagt_sorted = labels[perm]grad = lovasz_grad(gt_sorted)loss = torch.dot(F.relu(errors_sorted), Variable(grad))return lossdef flatten_binary_scores(scores, labels, ignore=None):"""Flattens predictions in the batch (binary case)Remove labels equal to 'ignore'"""scores = scores.view(-1)labels = labels.view(-1)if ignore is None:return scores, labelsvalid = (labels != ignore)vscores = scores[valid]vlabels = labels[valid]return vscores, vlabelsclass StableBCELoss(torch.nn.modules.Module):def __init__(self):super(StableBCELoss, self).__init__()def forward(self, input, target):neg_abs = - input.abs()loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()return loss.mean()def binary_xloss(logits, labels, ignore=None):"""Binary Cross entropy losslogits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)ignore: void class id"""logits, labels = flatten_binary_scores(logits, labels, ignore)loss = StableBCELoss()(logits, Variable(labels.float()))return loss# --------------------------- MULTICLASS LOSSES ---------------------------def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None):"""Multi-class Lovasz-Softmax lossprobas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).Interpreted as binary (sigmoid) output with outputs of size [B, H, W].labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.per_image: compute the loss per image instead of per batchignore: void class labels"""if per_image:loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes)for prob, lab in zip(probas, labels))else:loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes)return lossdef lovasz_softmax_flat(probas, labels, classes='present'):"""Multi-class Lovasz-Softmax lossprobas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)labels: [P] Tensor, ground truth labels (between 0 and C - 1)classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average."""if probas.numel() == 0:# only void pixels, the gradients should be 0return probas * 0.C = probas.size(1)losses = []class_to_sum = list(range(C)) if classes in ['all', 'present'] else classesfor c in class_to_sum:fg = (labels == c).float()  # foreground for class cif (classes == 'present' and fg.sum() == 0):continueif C == 1:if len(classes) > 1:raise ValueError('Sigmoid output possible only with 1 class')class_pred = probas[:, 0]else:class_pred = probas[:, c]errors = (Variable(fg) - class_pred).abs()errors_sorted, perm = torch.sort(errors, 0, descending=True)perm = perm.datafg_sorted = fg[perm]losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))return mean(losses)def flatten_probas(probas, labels, ignore=None):"""Flattens predictions in the batch"""if probas.dim() == 3:# assumes output of a sigmoid layerB, H, W = probas.size()probas = probas.view(B, 1, H, W)B, C, H, W = probas.size()probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C)  # B * H * W, C = P, Clabels = labels.view(-1)if ignore is None:return probas, labelsvalid = (labels != ignore)vprobas = probas[valid.nonzero().squeeze()]vlabels = labels[valid]return vprobas, vlabelsdef xloss(logits, labels, ignore=None):"""Cross entropy loss"""return F.cross_entropy(logits, Variable(labels), ignore_index=255)# --------------------------- HELPER FUNCTIONS ---------------------------
def isnan(x):return x != xdef mean(l, ignore_nan=False, empty=0):"""nanmean compatible with generators."""l = iter(l)if ignore_nan:l = ifilterfalse(isnan, l)try:n = 1acc = next(l)except StopIteration:if empty == 'raise':raise ValueError('Empty mean')return emptyfor n, v in enumerate(l, 2):acc += vif n == 1:return accreturn acc / n
import torch
import torch.nn as nn
import torch.nn.functional as F
from lovasz_losses import lovasz_hinge# __all__ = ['BCEDiceLoss', 'LovaszHingeLoss']class BCEDiceLoss(nn.Module):def __init__(self):super().__init__()def forward(self, input, target):bce = F.binary_cross_entropy_with_logits(input, target)smooth = 1e-5input = torch.sigmoid(input)num = target.size(0)input = input.view(num, -1)target = target.view(num, -1)intersection = (input * target)dice = (2. * intersection.sum(1) + smooth) / (input.sum(1) + target.sum(1) + smooth)dice = 1 - dice.sum() / numreturn 0.5 * bce + diceclass LovaszHingeLoss(nn.Module):def __init__(self):super().__init__()def forward(self, input, target):input = input.squeeze(1)target = target.squeeze(1)loss = lovasz_hinge(input, target, per_image=True)return lossif __name__ == '__main__':import torch# 假设模型输出和真实标签都是二值化的图像,大小为(1, H, W)output = torch.tensor([[[0.3, 0.7], [0.8, 0.6]]])  # 模型输出# output = output.round().long()target = torch.tensor([[[0, 1], [1, 0]]],dtype=torch.float)  # 真实标签bce_dice_loss = BCEDiceLoss()bce_dice = bce_dice_loss(output, target)lovasz_hinge_loss = LovaszHingeLoss()lovasz_hinge = lovasz_hinge_loss(output, target)print("BCE Dice Loss:", bce_dice)print("Lovasz Hinge Loss:", lovasz_hinge)

原理解释和数学公式:

BCEDiceLoss 原理:
  • BCE Dice Loss 结合了二元交叉熵损失和 Dice Loss。其数学表达式如下:

B C E _ D i c e _ L o s s = 0.5 × B C E + ( 1 − D i c e ) BCE\_Dice\_Loss = 0.5 \times BCE + (1 - Dice) BCE_Dice_Loss=0.5×BCE+(1Dice)

其中, B C E BCE BCE 表示二元交叉熵损失, D i c e Dice Dice 表示 Dice 相似度。这个损失函数的目标是最小化二元交叉熵损失和最大化 Dice 相似度,以达到更好的模型训练效果。

LovaszHingeLoss 原理:
  • Lovasz-Hinge Loss 是一种非平衡数据集上的损失函数,用于像素级别的分类任务。其数学表达式如下:

L o v a s z _ H i n g e _ L o s s = lovasz_hinge ( i n p u t , t a r g e t ) Lovasz\_Hinge\_Loss = \text{lovasz\_hinge}(input, target) Lovasz_Hinge_Loss=lovasz_hinge(input,target)

这里的 lovasz_hinge \text{lovasz\_hinge} lovasz_hinge 是一个函数,用于计算 Lovasz-Hinge Loss。

训练

√

评估函数

metrics.py

import numpy as np
import torch
import torch.nn.functional as Fdef iou_score(output, target):smooth = 1e-5if torch.is_tensor(output):output = torch.sigmoid(output).data.cpu().numpy()if torch.is_tensor(target):target = target.data.cpu().numpy()output_ = output > 0.5target_ = target > 0.5intersection = (output_ & target_).sum()union = (output_ | target_).sum()return (intersection + smooth) / (union + smooth)def dice_coef(output, target):smooth = 1e-5output = torch.sigmoid(output).view(-1).data.cpu().numpy()target = target.view(-1).data.cpu().numpy()intersection = (output * target).sum()return (2. * intersection + smooth) / \(output.sum() + target.sum() + smooth)if __name__ == '__main__':import numpy as npimport torch# 假设模型输出和真实标签都是二值化的图像,大小为(1, H, W)output = torch.tensor([[[0.3, 0.7], [0.8, 0.6]]])  # 模型输出target = torch.tensor([[[0, 1], [1, 0]]])  # 真实标签iou = iou_score(output, target)dice = dice_coef(output, target)print("IoU Score:", iou)print("Dice Coefficient:", dice)

在这里插入图片描述

IoU(Intersection over Union)评分函数原理

IoU 是一种常用的图像分割评价指标,它衡量了模型输出与真实标签之间的重程度。其数学公式如下:

I o U = T P T P + F P + F N IoU = \frac{{TP}}{{TP + FP + FN}} IoU=TP+FP+FNTP

其中, T P TP TP 表示真正例(模型正确预测为正样本的数量), F P FP FP 表示假正例(模型错误预测为正样本的数量), F N FN FN 表示假负例(模型错误预测为负样本的数量)。

Dice Coefficient评分函数原理

Dice Coefficient 也是一种常用的图像分割评价指标,衡量模型输出和真实标签之间的相似度。其数学公式如下:

D i c e = 2 × T P 2 × T P + F P + F N Dice = \frac{{2 \times TP}}{{2 \times TP + FP + FN}} Dice=2×TP+FP+FN2×TP

其中, T P TP TP 表示真正例, F P FP FP 表示假正例, F N FN FN 表示假负例,与 IoU 公式中的定义相同。

这两个评分函数都以模型的真正例为分子,而分母则是真正例、假正例和假负例的总和,以此来衡量模型预测结果与真实标签的相似程度。公式中的平滑因子用于避免分母为零的情况,增加了数值稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/1532.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生态短讯 | Tapdata 与 TDengine 完成产品兼容性互认证,打造物联网实时数据生态

近月,深圳钛铂数据有限公司(以下简称钛铂数据)自主研发的实时数据平台(Tapdata Live Data Platform)与北京涛思数据科技有限公司(以下简称涛思数据)自主研发的大数据平台 TDengine,已…

【深度学习】Dropout、DropPath

一、Dropout 1. 概念 Dropout 在训练阶段会让当前层每个神经元以drop_prob( 0 ≤ drop_prob ≤ 1 0\leq\text{drop\_prob}\leq1 0≤drop_prob≤1)的概率失活并停止工作,效果如下图。 在测试阶段不会进行Dropout。由于不同批次、不同样本的神…

数据库管理-第171期 Oracle是用这种方式确保读一致的(20240418)

数据库管理171期 2024-04-18 数据库管理-第171期 Oracle是用这种方式确保读一致的(20240418)1 基本概念2 用处3 注意事项总结 数据库管理-第171期 Oracle是用这种方式确保读一致的(20240418) 作者:胖头鱼的鱼缸&#x…

MySQL中explain的用法

执行结果各字段的含义 EXPLAIN SQL语句 如: EXPLAIN SELECT * FROM test 执行结果: 列名描述id在一个大的查询语句中每个SELECT关键字都对应一个 唯一的idselect_typeSELECT关键字对应的那个查询的类型table表名partitions匹配的分区信息type针对单表…

P2P面试题

1)描述一下你的项目流程以及你在项目中的职责? 一个借款产品的发布,投资人购买,借款人还款的一个业务流程,我主要负责测注册,登录,投资理财这三个模块 2)你是怎么测试投资模块的&am…

HttpServlet,ServletContext,Listener它仨的故事

1.HttpServlet。 听起来是不是感觉像是个上古词汇,是不是没有阅读下去的兴趣了?Tomcat知道吧,它就是一个servlet容器,当用户向服务器发送一个HTTP请求时,Servlet容器(如Tomcat)会根据其配置找到…

overflow(溢出)4个属性值,水平/垂直溢出,文字超出显示省略号的详解

你好,我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生,一枚程序媛,感谢关注。回复 “前端基础题”,可免费获得前端基础 100 题汇总,回复 “前端工具”,可获取 Web 开发工具合…

解析 IP(IPv4)地址

IPv 4 地址 一、组成二、IPv4 的分类三、子网掩码四、特殊的地址五、私有 IP 地址六、全局 IP 地址七、私有 IP 地址和全局 IP 地址的关系八、广播地址九、网络地址十、IP 地址个数计算十一、查看电脑的 IP 地址(window)十二、手动设置电脑的 IP 地址 为…

华为Pura 70系列,一种关于世界之美的可能

1874年,莫奈创作了《印象日出》的油画,在艺术界掀起了一场革命。当时的主流艺术,是追求细节写实,追求场面宏大的学院派。他们称莫奈等人是“印象派”,认为莫奈的画追求光影表达,追求描绘抽象的意境&#xf…

DRF: 序列化器、View、APIView、GenericAPIView、Mixin、ViewSet、ModelViewSet的源码解析

前言:还没有整理,后续有时间再整理,目前只是个人思路,文章较乱。 注意路径匹配的“/” 我们的url里面加了“/”,但是用apifox等非浏览器的工具发起请求时没有加“/”,而且还不是get请求,那么这…

天才简史——Sylvain Calinon

一、研究方向 learning from demonstration(LfD)领域的专家,机器人红宝书(Springer handbook of robotics)Robot programming by demonstration章节的合作者。主要研究兴趣包括: 机器人学习、最优控制、几…

[数据结构]——排序——插入排序

目录 ​编辑 1 .插入排序 1.基本思想: 2.直接插入排序: ​编辑 1.代码实现 2.直接插入排序的特性总结: 3.希尔排序( 缩小增量排序 ) 1.预排序 2.预排序代码 3.希尔排序代码 4.希尔排序的特性总结: 1 .插入排序 1.基本思…

从头开始构建自己的 GPT 大型语言模型

图片来源: Tatev Aslanyan 一、说明 我们将使用 PyTorch 从头开始构建生成式 AI、大型语言模型——包括嵌入、位置编码、多头自注意、残差连接、层归一化,Baby GPT 是一个探索性项目,旨在逐步构建类似 GPT 的语言模型。在这个项目中&#xff…

Linux 文件描述符

1、文件描述符 程序和进程的区别: 1、test.c:是一个程序,只占用磁盘空间,不占用内存空间 2、可执行文件 test:是一个程序,只占用磁盘空间,不占用内存空间 3、启动 可执行文件 test&#xff…

强固型工业电脑在码头智能化,龙门吊/流机车载电脑的行业应用

码头智能化行业应用 对码头运营来说,如何优化集装箱从船上到码头堆场到出厂区的各个流程以及达到提高效率。 降低成本的目的,是码头营运获利最重要的议题。为了让集装箱码头客户能够安心使用TOS系统来调度指挥码头上各种吊车、叉车、拖车和人员&#xf…

第一届 _帕鲁杯_ - CTF挑战赛

Mis 签到 题目附件: 27880 30693 25915 21892 38450 23454 39564 23460 21457 36865 112 108 98 99 116 102 33719 21462 21069 27573 102 108 97 103 20851 27880 79 110 101 45 70 111 120 23433 20840 22242 38431 22238 22797 112 108 98 99 116 102 33719 2…

matplotlib从起点出发(15)_Tutorial_15_blitting

0 位图传输技术与快速渲染 Blitting,即位图传输、块传输技术是栅格图形化中的标准技术。在Matplotlib的上下文中,该技术可用于(大幅度)提高交互式图形的性能。例如,动画和小部件模块在内部使用位图传输。在这里&#…

揭开ChatGPT面纱(3):使用OpenAI进行文本情感分析(embeddings接口)

文章目录 一、embeddings接口解析二、代码实现1.数据集dataset.csv2.代码3.运行结果 openai版本1.6.1 本系列博客源码仓库:gitlab,本博客对应文件夹03 在这一篇博客中我将使用OpenAI的embeddings接口判断21条服装评价是否是好评。 首先来看实现思路&am…

Llama3新一代 Llama模型

最近,Meta 发布了 Llama3 模型,从发布的数据来看,性能已经超越了 Gemini 1.5 和 Claud 3。 Llama 官网说,他们未来是要支持多语言和多模态的,希望那天赶紧到来。 未来 Llama3还将推出一个 400B大模型,目前…

计算机网络——数据链路层(介质访问控制)

计算机网络——数据链路层(介质访问控制) 介质访问控制静态划分信道动态划分信道ALOHA协议纯ALOHA(Pure ALOHA)原理特点 分槽ALOHA(Slotted ALOHA)原理特点 CSMA协议工作流程特点 CSMA-CD 协议工作原理主要…