KNN算法处理多元分类任务

概述

这个案例还是基于之前的案例进行改造。

之前的案例代码完整如下:

from sklearn.datasets import make_blobs
# KNN 分类器
from sklearn.neighbors import KNeighborsClassifier
# 画图工具
import matplotlib.pyplot as plt
# 数据集拆分工具
from sklearn.model_selection import train_test_split
# 数据分析
import numpy as np# 生成样本数为200,分类为2的数据集
data = make_blobs(n_samples=200, centers=2, random_state=8)
X, y = data# 创建knn分类器
clf = KNeighborsClassifier()
clf.fit(X, y)# 画图
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
z = z.reshape(xx.shape)# 绘制数据集
plt.pcolormesh(xx, yy, z, cmap=plt.cm.Pastel1)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.spring, edgecolor='k')# 把新的数据点用五角星表示出来
plt.scatter(6.75, 4.82, marker="*", c="red", s=200)plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("Classifier: KNN")plt.show()# 预测
print(clf.predict([[6.75, 4.82]]))

输出结果如下:
在这里插入图片描述

构造新的数据集

构造一个样本数为500,分类数为5的数据集,然后使用散点图进行可视化:

# 生成样本数为500, 分类数为5的数据集
data2 = make_blobs(n_samples=500, centers=5, random_state=8)
X2, y2 = data2# 用散点图将数据集进行可视化
plt.scatter(X2[:,0], X2[:,1], c=y2, cmap=plt.cm.spring, edgecolor='k')
plt.show()

效果预览如下:
在这里插入图片描述

此时的完整代码如下:

from sklearn.datasets import make_blobs
# KNN 分类器
from sklearn.neighbors import KNeighborsClassifier
# 画图工具
import matplotlib.pyplot as plt
# 数据集拆分工具
from sklearn.model_selection import train_test_split
# 数据分析
import numpy as np# 生成样本数为500, 分类数为5的数据集
data2 = make_blobs(n_samples=500, centers=5, random_state=8)
X2, y2 = data2# 用散点图将数据集进行可视化
plt.scatter(X2[:,0], X2[:,1], c=y2, cmap=plt.cm.spring, edgecolor='k')
plt.show()

X2和y2分别是什么?

此时,X2依旧还是一个二维数组:
在这里插入图片描述

y2是一个一维数组,记录了每一行对应的分类是什么:
在这里插入图片描述

使用KNN训练模型

核心代码:

# 训练模型
clf  = KNeighborsClassifier()
clf.fit(X2, y2)# 画图
x_min, x_max = X2[:,0].min() - 1, X2[:,0].max() + 1
y_min, y_max = X2[:,1].min() - 1, X2[:,1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
z = z.reshape(xx.shape)plt.pcolormesh(xx, yy, z, cmap=plt.cm.Pastel1)
plt.scatter(X2[:,0], X2[:,1], c=y2, cmap=plt.cm.spring, edgecolor='k')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("Classifier: KNN")
plt.show()

输出结果:
在这里插入图片描述

此时的完整代码如下:

from sklearn.datasets import make_blobs
# KNN 分类器
from sklearn.neighbors import KNeighborsClassifier
# 画图工具
import matplotlib.pyplot as plt
# 数据集拆分工具
from sklearn.model_selection import train_test_split
# 数据分析
import numpy as np# 生成样本数为500, 分类数为5的数据集
data2 = make_blobs(n_samples=500, centers=5, random_state=8)
X2, y2 = data2# 训练模型
clf  = KNeighborsClassifier()
clf.fit(X2, y2)# 画图
x_min, x_max = X2[:,0].min() - 1, X2[:,0].max() + 1
y_min, y_max = X2[:,1].min() - 1, X2[:,1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
z = z.reshape(xx.shape)plt.pcolormesh(xx, yy, z, cmap=plt.cm.Pastel1)
plt.scatter(X2[:,0], X2[:,1], c=y2, cmap=plt.cm.spring, edgecolor='k')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("Classifier: KNN")
plt.show()

查看模型评分

核心代码:

clf.score(X2, y2)

输出如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/13114.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java获取请求参数

1.简单参数接收 前端请求参数与Controller接受变量名一致 如果参数名不一致,接受不成功。 可以用RequestParam指定参数名,可以用username接收(不推荐)。 required true,表示参数必须传递,如果不传递会报错…

深入剖析Tomcat(八) 载入器与打破双亲委派机制的自定义类加载器

写这篇文章让我头大了好几天,书中描述的内容倒是不多,可能也是那会Tomcat的现状。如今Tomcat发展了好多代,加上springboot的广泛应用,导致现在的类加载的步骤和Tomcat资料中描述的大相径庭。可能也是由于微服务的发展,…

基于 Spring Boot 博客系统开发(十)

基于 Spring Boot 博客系统开发(十) 本系统是简易的个人博客系统开发,为了更加熟练地掌握 SprIng Boot 框架及相关技术的使用。🌿🌿🌿 基于 Spring Boot 博客系统开发(九)&#x1f…

Golang | Leetcode Golang题解之第91题解码方法

题目&#xff1a; 题解&#xff1a; func numDecodings(s string) int {n : len(s)// a f[i-2], b f[i-1], c f[i]a, b, c : 0, 1, 0for i : 1; i < n; i {c 0if s[i-1] ! 0 {c b}if i > 1 && s[i-2] ! 0 && ((s[i-2]-0)*10(s[i-1]-0) < 26) {c…

Navicat 干货 | 探索 PostgreSQL 中不同类型的约束

PostgreSQL 的一个重要特性之一是能够对数据实施各种约束&#xff0c;以确保数据完整性和可靠性。今天的文章中&#xff0c;我们将概述 PostgreSQL 的各种约束类型并结合免费的 "dvdrental" 示例数据库 中的例子探索他们的使用方法。 1. 检查约束&#xff1a; 检查…

颜色的表示和还原(一)

这篇文章主要提炼于ICCV 2019 Tutorial: Understanding Color and the In-Camera Image Processing Pipeline for Computer Vision。里面深入浅出地讲解了很多ISP中的基础知识&#xff0c;这里主要对颜色相关的部分做一点总结。 假设不成立了 相机经常被简单地看作是衡量光线…

STM32学习计划

前言&#xff1a; 这里先记录下STM32的学习计划。 2024/05/08 今天我正在学习的是正点原子的I.MX6ULL APLHA/Mini 开发板的 Linux 之ARM裸机第二期开发的视频教程&#xff0c;会用正点原子的I.MX6ULL开发板学习第二期ARM裸机开发的教程&#xff0c;然后是学习完正点原子的I.M…

Mybatis基础操作-删除

Mybatis基础操作-删除 删除 package com.itheima.mapper;import org.apache.ibatis.annotations.Delete; import org.apache.ibatis.annotations.Mapper;Mapper //在运行时&#xff0c;会自动生成该接口的实现类对象&#xff08;代理对象&#xff09;&#xff0c;并且将该对象…

QT:QML与C++交互

目录 一.介绍 二.pro文件添加模块 三.h文件 四.cpp文件 五.注册 六.调用 七.展示效果 八.代码 1.qmlandc.h 2.qmlandc.cpp 3.main.cpp 4.qml 一.介绍 在 Qt 中&#xff0c;QML 与 C 交互是非常重要的&#xff0c;因为它允许开发人员充分利用 QML 和 C 各自的优势&…

我21岁玩“撸货”,被骗1000多万

最近&#xff0c;撸货业界内发生了一些颇受瞩目的事件。 在郑州&#xff0c;数码档口下面抢手团长跑路失联&#xff0c;涉及金额几百万&#xff0c;在南京&#xff0c;一家知名的电商平台下的收货站点突然失联&#xff0c;涉及金额高达一千多万&#xff0c;令众多交易者震惊不已…

YOLOv8改进 | 图像修复 | 适用多种复杂场景的全能图像修复网络AirNet助力YOLOv8检测(全网独家首发)

一、本文介绍 本文给大家带来的改进机制是一种适用多种复杂场景的全能图像修复网络AirNet&#xff0c;其由对比基降解编码器&#xff08;CBDE&#xff09;和降解引导修复网络&#xff08;DGRN&#xff09;两个神经模块组成&#xff0c;能够在未知损坏类型和程度的情况下恢复受…

Java | Leetcode Java题解之第92题反转链表II

题目&#xff1a; 题解&#xff1a; class Solution {public ListNode reverseBetween(ListNode head, int left, int right) {// 设置 dummyNode 是这一类问题的一般做法ListNode dummyNode new ListNode(-1);dummyNode.next head;ListNode pre dummyNode;for (int i 0; …

【SQL】SQL常见面试题总结(3)

目录 1、聚合函数1.1、SQL 类别高难度试卷得分的截断平均值&#xff08;较难&#xff09;1.2、统计作答次数1.3、得分不小于平均分的最低分 2、分组查询2.1、平均活跃天数和月活人数2.2、月总刷题数和日均刷题数2.3、未完成试卷数大于 1 的有效用户&#xff08;较难&#xff09…

蓝桥杯 EDA 组 历届国赛真题解析

一、2021年国赛真题 1.1 CN3767 太阳能充电电路 CN3767 是具有太阳能电池最大功率点跟踪功能的 4A&#xff0c;12V 铅酸电池充电管理集成电路。 最大功率点应指的是电池板的输出电压&#xff0c;跟踪电压其做保护。当然 CN3767 也可以直接使用直流充电&#xff0c;具体可以阅读…

DS高阶:跳表

一、skiplist 1.1 skiplist的概念 skiplist本质上也是一种查找结构&#xff0c;用于解决算法中的查找问题&#xff0c;跟平衡搜索树和哈希表的价值是一样的&#xff0c;可以作为key或者key/value的查找模型。skiplist是由William Pugh发明的&#xff0c;最早出现于他在1990年发…

Python学习之路 | Python基础语法(一)

数据类型 Python3 中常见的数据类型有&#xff1a; Number&#xff08;数字&#xff09;String&#xff08;字符串&#xff09;bool&#xff08;布尔类型&#xff09;List&#xff08;列表&#xff09;Tuple&#xff08;元组&#xff09;Set&#xff08;集合&#xff09;Dict…

【Image captioning】基于检测模型网格特征提取——以Sydeny为例

【Image captioning】基于检测模型网格特征提取——以Sydeny为例 今天,我们将重点探讨如何利用Faster R-CNN检测模型来提取Sydeny数据集的网格特征。具体而言,这一过程涉及通过Faster R-CNN模型对图像进行分析,进而抽取出关键区域的特征信息,这些特征在网格结构中被系统地…

代码随想录--链表--反转链表

题目 题意&#xff1a;反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 思路 如果再定义一个新的链表&#xff0c;实现链表元素的反转&#xff0c;其实这是对内存空间的浪费。 其实只需要改变链表的next指针的…

GPU学习记一下线程分组相关

在compute的时候&#xff0c;是要dispatch一个数量的代表分了多少块任务集&#xff0c;dispatch的块内部也是有一个数量的&#xff0c;那么这些值怎么取的呢 内部&#xff0c;N卡32 外面dispatch的数量就是all/32 然后细说这个值 这有一个叫core的东西&#xff0c;就是相当于th…

嵌入式学习-PWM输出比较

简介 PWM技术 输出比较框图介绍 定时器部分 比较器控制部分 输出控制部分 相关寄存器