探索数据结构:堆的具体实现与应用

✨✨ 欢迎大家来到贝蒂大讲堂✨✨

🎈🎈养成好习惯,先赞后看哦~🎈🎈

所属专栏:数据结构与算法
贝蒂的主页:Betty’s blog

1. 堆的概念

堆(Heap)是计算机科学中一类特殊的数据结构。堆通常是一个可以被看作一棵完全二树的数组对象,若满足:

  • 任意节点的值>=其子节点的值。则称为大根堆
  • 任意节点的值<=其子节点的值。则称为小根堆

img

img

2. 堆的实现方式

虽然堆是一种特殊的二叉树,它既可以用数组存储也可以用链式存储。但是考虑到其完全二叉树的特性,我们最好采用数组存储的方式,因为这样既方便访问,也并不会浪费格外的空间。

img

假设某个合法下标为i:

  • 若双亲节点存在,下标为(i-1)/2。
  • 若孩子节点存在,左孩子下标为2i+1,右孩子为2i+2。

3. 堆的功能

  1. 堆的初始化。
  2. 堆的插入。
  3. 堆的删除。
  4. 获取堆顶的元素。
  5. 堆的元素个数。
  6. 堆的判空。
  7. 输出堆。
  8. 建堆。
  9. 销毁堆。

4. 堆的声明

因为我用数组实现堆,所以堆的声明与顺序表类似。

typedef int HpDataType;
typedef struct Heap 
{HpDataType* a;//存储数据int size;//大小int capacity;//容量
}Heap;

5. 堆的实现

5.1. 堆的初始化

5.1.1. 代码实现
void HeapInit(Heap* hp)//堆的初始化
{assert(hp);hp->a = NULL;hp->size = hp->capacity = 0;
}
5.1.2. 复杂度分析
  • 时间复杂度:没有额外的时间消耗,时间复杂度为O(1)。
  • 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。

5.2. 堆的插入

当我们堆进行插入时可能会破坏堆的原有结构,这时就需要我们对其进行向上调整。

img

5.2.1. 代码实现
void AdjustUp(Heap* hp, int child)//向上调整
{int parent = (child - 1) / 2;while (child > 0){if (hp->a[child] > hp->a[parent]){swap(&hp->a[child], &hp->a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
void HeapPush(Heap* hp, HpDataType x)//堆的插入
{assert(hp);if (hp->size == hp->capacity){int newCapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;HpDataType* tmp = (HpDataType*)realloc(hp->a, newCapacity * sizeof(HpDataType));if (tmp == NULL){perror("realloc fail");exit(-1);}hp->a = tmp;hp->capacity = newCapacity;}hp->a[hp->size] = x;hp->size++;AdjustUp(hp, hp->size - 1);//向上调整
}
5.2.2. 复杂度分析
  • 时间复杂度:假设有N个节点,高度为h,2h -1=N。至少调整log2(N+1)-1次,所以时间复杂度为logN。
  • 空间复杂度:没有开辟额外的空间,空间复杂度为O(1)。

5.3. 堆的删除

堆的删除是指删除堆顶的数据,如果我们删除堆顶元素并往前覆盖就可能打乱原有的亲缘关系。所以我们可以先将堆顶的元素与末尾元素交换,然后再进行向下调整·。

img

5.3.1. 代码实现
void swap(HpDataType* x1, HpDataType* x2)
{HpDataType tmp = *x1;*x1 = *x2;*x2 = tmp;
}
void 
void AdjustDown(int* a, int n, int parent)//向下调整
{int child = parent * 2 + 1;//默认左孩子更大while (child < n){	if (child + 1 < n && a[child + 1]> a[child]){++child;//右孩子}if (a[child] > a[parent]){swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else {break;}}
}void HeapPop(Heap* hp)//删除堆顶元素
{assert(hp);assert(hp->size > 0);swap(&hp->a[0], &hp->a[hp->size - 1]);hp->size--;//删除最后一个数据AdjustDown(hp->a, hp->size, 0);//向下调整
}
5.3.2. 复杂度分析
  • 时间复杂度:假设有N个节点,高度为h,2h -1=N。至少调整log2(N+1)-1次,所以时间复杂度为logN。
  • 空间复杂度:没有开辟额外的空间,空间复杂度为O(1)。

5.4. 获取堆顶元素

5.4.1. 代码实现
HpDataType HeapTop(Heap* hp)//获取堆顶元素
{assert(hp);assert(hp->size > 0);return hp->a[0];
}
5.4.2. 复杂度分析
  • 时间复杂度:没有额外的时间消耗,时间复杂度为O(1)。
  • 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。

5.5. 获取堆的元素个数

5.5.1. 代码实现
size_t HeapSize(Heap* hp)//堆的大小
{assert(hp);return hp->size;
}
5.5.2. 复杂度分析
  • 时间复杂度:没有额外的时间消耗,时间复杂度为O(1)。
  • 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。

5.6. 判断堆是否为空

5.6.1. 代码实现
bool HeapEmpty(Heap* hp)//判断堆是否为空
{assert(hp);return hp->size == 0;
}
5.6.2. 复杂度分析
  • 时间复杂度:没有额外的时间消耗,时间复杂度为O(1)。
  • 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。

5.7. 输出堆

5.7.1. 代码实现
void HeapDisplay(Heap* hp)//堆的打印
{for (int i = 0; i < hp->size; ++i){printf("%d ", hp->a[i]);}printf("\n");
}
5.7.2. 复杂度分析
  • 时间复杂度:遍历整个数组,时间复杂度为O(N)。
  • 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。

5.8. 建堆

5.8.1. 代码实现
void HeapCreatUp(Heap* hp,HpDataType* arr,int n)//向上调整建堆
{assert(hp && arr);for (int i = 0; i < n; i++){HeapPush(hp, arr[i]);}
}
void HeapCreatDown(Heap* hp, HpDataType* arr, int n)//向下调整建堆
{assert(hp && arr);HpDataType* tmp = (HpDataType*)malloc(sizeof(HpDataType) * n);if (tmp == NULL){perror("malloc fail");exit(-1);}hp->a = tmp;memcpy(hp->a, arr, sizeof(HpDataType) * n);hp->size = n;hp->capacity = n;for (int i = ((n - 1) - 1) / 2; i >= 0; i--)//从最后一个元素开始{AdjustDown(hp->a, n, i);}
}
5.8.2. 复杂度分析

假设高度为h,节点个数为N。如果是向上调整建堆:

img

F ( N ) = 2 1 × 1 + 2 2 × 2 + . . . + 2 h − 1 × ( h − 1 ) 2 F ( N ) = 2 2 × 1 + 2 3 × 2 + . . . + 2 h − 1 × ( h − 1 ) + 2 h × ( h − 1 ) 2 F ( N ) − F ( N ) = − 2 1 − 2 2 − 2 3 − . . . 2 h − 1 + 2 h × ( h − 1 ) = − 2 h + 2 − 2 h + 2 h × h F ( N ) = 2 h × ( h − 2 ) + 2 , N = 2 h − 1 F ( N ) = ( N + 1 ) × ( l o g 2 ( N + 1 ) − 2 ) + 2 F(N)=2^1×1+2^2×2+...+2^{h-1}×(h-1)\\ 2F(N)=2^2×1+2^3×2+...+2^{h-1}×(h-1)+2^h×(h-1)\\ 2F(N)-F(N)=-2^1-2^2-2^3-...2^{h-1}+2^h×(h-1)=-2^h+2-2^h+2^h×h\\ F(N)=2^h×(h-2)+2,N=2^h-1\\ F(N)=(N+1)×(log2(N+1)-2)+2 F(N)=21×1+22×2+...+2h1×(h1)2F(N)=22×1+23×2+...+2h1×(h1)+2h×(h1)2F(N)F(N)=212223...2h1+2h×(h1)=2h+22h+2h×hF(N)=2h×(h2)+2,N=2h1F(N)=(N+1)×(log2(N+1)2)+2

如果是向下调整建堆:

img
F ( N ) = 2 h − 2 × 1 + 2 h − 3 × 2 + . . . + 2 0 × ( h − 1 ) 2 F ( N ) = 2 h − 1 × 1 + 2 h − 2 × 2 + . . . + 2 1 × ( h − 1 ) 2 F ( N ) − F ( N ) = 2 h − 1 + 2 h − 2 + . . . 2 1 − 2 0 × ( h − 1 ) = 2 h − 1 − h F ( N ) = 2 h − 1 − h , N = 2 h − 1 F ( N ) = N − l o g 2 ( N + 1 ) F(N)=2^{h-2}×1+2^{h-3}×2+...+2^0×(h-1)\\ 2F(N)=2^{h-1}×1+2^{h-2}×2+...+2^1×(h-1)\\ 2F(N)-F(N)=2^{h-1}+2^{h-2}+...2^1-2^0×(h-1)=2^h-1-h\\ F(N)=2^h-1-h,N=2^h-1\\ F(N)=N-log2(N+1) F(N)=2h2×1+2h3×2+...+20×(h1)2F(N)=2h1×1+2h2×2+...+21×(h1)2F(N)F(N)=2h1+2h2+...2120×(h1)=2h1hF(N)=2h1h,N=2h1F(N)=Nlog2(N+1

  • 时间复杂度:向上调整建堆最后一排调整h-1次,倒数第二排调整h-2次…时间复杂度为NlogN。向下调整建堆倒数第二排调整1次,倒数第二排调整2…第一排调整h-1次。时间复杂为O(N)。
  • 空间复杂度:无论是向上调整建堆还是向下调整建堆都需开辟N个空间,所以空间复杂度为O(N)。

5.9. 销毁堆

5.9.1. 代码实现
void HeapDestroy(Heap* hp)//销毁堆
{assert(hp);free(hp->a);hp->size = hp->capacity = 0;
}
5.9.2. 复杂度分析
  • 时间复杂度:没有额外的时间消耗,时间复杂度为O(1)。
  • 空间复杂度:没有额外的空间消耗,空间复杂度为O(1)。

5.10. 完整代码

5.10.1. Heap.h
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<assert.h>
typedef int HpDataType;
typedef struct Heap 
{HpDataType* a;//存储数据int size;//大小int capacity;//容量
}Heap;
void HeapInit(Heap* hp);//堆的初始化
void AdjustUp(Heap* hp, int child);//向上调整
void HeapPush(Heap* hp, HpDataType x);//堆的插入
bool HeapEmpty(Heap* hp);//判断堆是否为空
size_t HeapSize(Heap* hp);//堆的大小
void AdjustDown(int* a, int n, int parent);//向下调整
void HeapPop(Heap* hp);//删除堆顶元素
HpDataType HeapTop(Heap* hp);//获取堆顶元素
void HeapDisplay(Heap* hp);//堆的打印
void HeapDestroy(Heap* hp);//销毁堆
void HeapCreatUp(Heap* hp,HpDataType* arr, int n);//向上调整建堆
void HeapCreatDown(Heap* hp,HpDataType* arr, int n);//向下调整建堆
5.10.2. Heap.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
void HeapInit(Heap* hp)//堆的初始化
{assert(hp);hp->a = NULL;hp->size = hp->capacity = 0;
}
void swap(HpDataType* x1, HpDataType* x2)
{HpDataType tmp = *x1;*x1 = *x2;*x2 = tmp;
}
void AdjustUp(Heap* hp, int child)//向上调整
{int parent = (child - 1) / 2;while (child > 0){if (hp->a[child] > hp->a[parent]){swap(&hp->a[child], &hp->a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
void HeapPush(Heap* hp, HpDataType x)//堆的插入
{assert(hp);if (hp->size == hp->capacity){int newCapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;HpDataType* tmp = (HpDataType*)realloc(hp->a, newCapacity * sizeof(HpDataType));if (tmp == NULL){perror("realloc fail");exit(-1);}hp->a = tmp;hp->capacity = newCapacity;}hp->a[hp->size] = x;hp->size++;AdjustUp(hp, hp->size - 1);//向上调整
}
void AdjustDown(int* a, int n, int parent)//向下调整
{int child = parent * 2 + 1;//默认左孩子更大while (child < n){	if (child + 1 < n && a[child + 1]> a[child]){++child;//右孩子}if (a[child] > a[parent]){swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else {break;}}
}void HeapPop(Heap* hp)//删除堆顶元素
{assert(hp);assert(hp->size > 0);swap(&hp->a[0], &hp->a[hp->size - 1]);hp->size--;//删除最后一个数据AdjustDown(hp->a, hp->size, 0);//向下调整
}HpDataType HeapTop(Heap* hp)//获取堆顶元素
{assert(hp);assert(hp->size > 0);return hp->a[0];
}bool HeapEmpty(Heap* hp)//判断堆是否为空
{assert(hp);return hp->size == 0;
}size_t HeapSize(Heap* hp)//堆的大小
{assert(hp);return hp->size;
}void HeapDisplay(Heap* hp)//堆的打印
{for (int i = 0; i < hp->size; ++i){printf("%d ", hp->a[i]);}printf("\n");
}
void HeapCreatUp(Heap* hp,HpDataType* arr,int n)//向上调整建堆
{assert(hp && arr);for (int i = 0; i < n; i++){HeapPush(hp, arr[i]);}
}
void HeapCreatDown(Heap* hp, HpDataType* arr, int n)//向下调整建堆
{assert(hp && arr);HpDataType* tmp = (HpDataType*)malloc(sizeof(HpDataType) * n);if (tmp == NULL){perror("malloc fail");exit(-1);}hp->a = tmp;memcpy(hp->a, arr, sizeof(HpDataType) * n);hp->size = n;hp->capacity = n;for (int i = ((n - 1) - 1) / 2; i >= 0; i--)//从最后一个元素开始{AdjustDown(hp->a, n, i);}
}
void HeapDestroy(Heap* hp)//销毁堆
{assert(hp);free(hp->a);hp->size = hp->capacity = 0;
}

6. Top-K问题

6.1. 问题分析

Top-K问题简单来说就是求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。这个问题在我们日常生活中非常常见,比如说:游戏中活跃度前十的玩家,世界五百强企业等等。

解决这个问题常见的思路就是遍历或者排序,但是当数据量较大时这种方法就并不适用了。这时我们就需要建堆来处理,具体操作方法如下:

  1. 用数据集合中前K个元素来建堆。
  • 前k个最大的元素,则建小堆。
  • 前k个最小的元素,则建大堆。
  • 用剩余的N - K个元素依次与堆顶元素来比较,不满足条件则替换堆顶元素。
void TopK(int* a, int n, int k)
{//建堆int* kminHeap = (int*)malloc(sizeof(int) * k);if (kminHeap == NULL){perror("malloc fail");exit(-1);}//将前k个数据放入堆中for (int i = 0; i < k; i++){kminHeap[i] = a[i];}//向下调整法建小堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(kminHeap, k, i);}//依次比较for (int i = k; i < n; i++){if (a[i] > kminHeap[0]){kminHeap[0] = a[i];AdjustDown(kminHeap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", kminHeap[i]);}printf("\n");free(kminHeap);
}
void TestTopk()
{int n = 10000;int* a = (int*)malloc(sizeof(int) * n);srand(time(0));for (size_t i = 0; i < n; ++i){a[i] = rand() % 1000000;}a[5] = 1000000 + 1;a[1231] = 1000000 + 2;a[531] = 1000000 + 3;a[5121] = 1000000 + 4;a[115] = 1000000 + 5;a[2335] = 1000000 + 6;a[9999] = 1000000 + 7;a[76] = 1000000 + 8;a[423] = 1000000 + 9;a[3144] = 1000000 + 10;TopK(a, n, 10);
}

img

6.2. 复杂度分析

  • 时间复杂度:建堆时间为K,向下调整的最坏时间为(N-K)*logK。所以时间复杂度为NlogK。
  • 空间复杂度:建堆会开辟K的个空间,所以空间复杂度为logK。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/12285.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ QT设计模式 (第二版)

第3章 Qt简介 3.2 Qt核心模块 Qt是一个大库&#xff0c;由数个较小的库或者模块组成&#xff0c;最为常见的如下&#xff1a;core、gui、xml、sql、phonon、webkit&#xff0c;除了core和gui&#xff0c;这些模块都需要在qmake的工程文件中启用 QTextStream 流&#xff0c;Qdat…

2024年高考倒计时精品网页

2024年高考倒计时精品网页 前言效果图部分代码领取源码下期更新预报 前言 随着季风轻轻掠过&#xff0c;岁月如梭&#xff0c;再次迎来了这个属于青春与梦想交汇的时刻——高考。这是一场知识的较量&#xff0c;更是一次意志的考验。在这最后的冲刺阶段&#xff0c;每一刻都显…

可视化 FlowChart 0.4.1 最强的拖拽组件

主要解决以及目标&#xff1a; ti-flowchart 能满足 二次开发的大部分需求。 下发GIF图可见&#xff0c;左边的模块A 由二次开发人员设计&#xff0c;通过向flowchart注册模块Dom&#xff0c;实现符合拖拽&#xff0c;编辑&#xff0c;布局&#xff0c;以及响应事件上抛。 实…

vaspkit 画 Charge-Density Difference

(echo 314;echo $(cat 1))|vaspkit 文件1提前写好使用的CHGCAR路径 SPIN_DW.vasp ../ML2scf/SPIN_DW.vasp ../ML1scf/SPIN_DW.vasp POSite and negative 默认为blue,and 青色 (RGB 30 245 245) 正值&#xff1a;blue 。负值&#xff1a;青色 RGB 30 245 245。 提示&…

(深度估计学习)Win11复现DepthFM

目录 1. 系统配置2. 拉取代码&#xff0c;配置环境3.开始深度预测4.运行结果 论文链接&#xff1a;https://depthfm.github.io/ 讲解链接&#xff1a;https://www.php.cn/faq/734404.html 1. 系统配置 本人系统&#xff1a;Win11 CUDA12.2 python3.11.5 这里附上几个CUDA安装链…

[Cesium]Cesium基础学习——Primitive

Cesium开发高级篇 | 01空间数据可视化之Primitive - 知乎 Primitive由两部分组成&#xff1a;几何体&#xff08;Geometry&#xff09;和外观&#xff08;Appearance&#xff09;。几何体定义了几何类型、位置和颜色&#xff0c;例如三角形、多边形、折线、点、标签等&#xff…

pdffactory pro8.0虚拟打印机(附注册码)

PdfFactory pro是一款非常受欢迎的PDF虚拟打印机&#xff0c;可以帮助用户将你的其他文档保存为PDF格式。请为用户提供打印/发送/加密等多种实用功能&#xff0c;以及一套完善的PDF打印方案。 使用说明 下载pdfFactory Pro压缩包&#xff0c;解压后&#xff0c;双击exe文件&am…

EEL中 python端的函数名是如何传递给js端的

python端的函数名是如何传递给js端的 核心步骤&#xff1a;将函数名列表注入到动态生成的 eel.js 中&#xff0c;这样前端一开始引用的eel.js本身已经包含有py_function的函数名列表了。你打开开发者工具看看浏览器中的 eel.js文件源代码就知道了。 具体实现&#xff1a; # 读…

全面解析OpenAI的新作——GPT-4o

5月14日凌晨1点、太平洋时间的上午 10 点&#xff0c;OpenAI的GPT-4o的横空出世&#xff0c;再次巩固了其作为行业颠覆者的地位。GPT-4o的发布不仅仅是一个产品的揭晓&#xff0c;它更像是向世界宣告AI技术已迈入了一个全新的纪元&#xff0c;连OpenAI的领航者萨姆奥特曼也不禁…

楼宇智慧公厕建设新方案-集成更简单!成本价更低!

在当今的大厦和写字楼中&#xff0c;公厕面临着诸多痛点。 办公楼公厕常常存在厕位难找的问题&#xff0c;使用者不得不花费时间逐一查看&#xff0c;导致效率低下&#xff1b;环境质量也令人担忧&#xff0c;异味、脏污等情况时有发生&#xff0c;影响使用者的心情和健康&…

【simulink】Scrambling 加扰

https://ww2.mathworks.cn/help/comm/ug/additive-scrambling-of-input-data-in-simulink.html 草图 simulink 代码图

QT状态机10-QKeyEventTransition和QMouseEventTransition的使用

1、QMouseEventTransition的使用 首先明白 QMouseEventTransition 继承自 QEventTransition类。 关于QEventTransition类的使用,可参考 QT状态机9-QEventTransition和QSignalTransition的使用 回顾 QT状态机9-QEventTransition和QSignalTransition的使用 中的状态切换代码,如…

零基础10 天入门 Web3之第3天

10 天入门 Web3之第3天 什么是以太坊&#xff0c;以太坊能做什么&#xff1f;Web3 是互联网的下一代&#xff0c;它将使人们拥有自己的数据并控制自己的在线体验。Web3 基于区块链技术&#xff0c;该技术为安全、透明和可信的交易提供支持。我准备做一个 10 天的学习计划&…

AI+新能源充电桩数据集

需要的同学私信联系&#xff0c;推荐关注上面图片右下角的订阅号平台 自取下载。 随着我国新能源汽车市场的蓬勃发展&#xff0c;充电桩的需求量日益增加&#xff0c;充电桩的智能化程度不仅影响充电站运营商的经营效益&#xff0c;也大大影响着用户的充电体验。AI技术可以涵盖…

python “名称空间和作用域” 以及 “模块的导入和使用”

七、名称空间和作用域 可以简单理解为存放变量名和变量值之间绑定关系的地方。 1、名称空间 在 Python 中有各种各样的名称空间&#xff1a; 全局名称空间&#xff1a;每个程序的主要部分定义了全局的变量名和变量值的对应关系&#xff0c;这样就叫做全局名称空间 局部名称…

04-单片机商业项目编程,从零搭建低功耗系统设计

一、本文内容 上一节《03-单片机商业项目编程&#xff0c;从零搭建低功耗系统设计-CSDN博客》我们确定了设计思路&#xff0c;并如何更有效的保持低功耗&#xff0c;这节我们就准备来做软件框架设计。在AI飞速发展的时代&#xff0c;我们也会利AI来辅助我们完成&#xff0c;让自…

浅谈C++ overload(重载) override(覆盖) overwrite(重写)

目录 1. 名词辨析2 含义解析1 overload重载2 override覆盖3 overwrite重写 3 区别4 代码示例 1. 名词辨析 关于这3个名词的中文翻译&#xff1a; overload翻译为重载&#xff0c;基本是没有歧义的&#xff1b;override和overwrite的翻译&#xff0c;我在参考了cppreference中…

.NET周刊【5月第2期 2024-05-12】

国内文章 C#在工业数字孪生中的开发路线实践 https://mp.weixin.qq.com/s/b_Pjt2oii0Xa_sZp_9wYWg 这篇文章探讨了C#在工业数字孪生技术中的应用&#xff0c;介绍了三种基于C#的数字孪生系统实现方案&#xff1a; WPF Unity&#xff1a;结合WPF技术和Unity引擎&#xff0c…

接口、会话控制

文章目录 接口介绍RESTful APIjson-server接口测试工具apipost公共参数和文档功能 会话控制cookie介绍和使用运行流程浏览器中操作Cookieexpress中cookie操作 Sessionsession运行流程&#xff1a;session中间件配置session 和 cookie 的区别CSRF跨站请求伪造 tokenJWT介绍与演示…

idea控制台日志控制

1.清除控制台log日志 测试的时候&#xff0c;控制台打印的日志比较多&#xff0c;速度有点慢而且不利于查看运行结果&#xff0c;所以接下来我们把这个日志处理下: 取消初始化spring日志打印&#xff0c;resources目录下添加logback.xml&#xff0c;名称固定&#xff0c;内容如…