测试和开发工作必备的17个Python自动化代码

 

您是否厌倦了在日常工作中做那些重复性的任务?简单但多功能的Python脚本可以解决您的问题。 

我们将通过上下两个篇章为您介绍17个能够自动执行各种任务并提高工作效率Python脚本及其代码。无论您是开发人员、数据分析师,还是只是希望简化工作流程的人,这些脚本都能满足您的需求。

引言

Python是一种流行的编程语言,以其简单性和可读性而闻名。因其能够提供大量的库和模块,它成为了自动化各种任务的绝佳选择。让我们进入自动化的世界,探索17个可以简化工作并节省时间精力的Python脚本。

1.自动化文件管理

1.1 对目录中的文件进行排序

```# Python script to sort files in a directory by their extensionimport osfromshutil import movedef sort_files(directory_path):for filename in os.listdir(directory_path):if os.path.isfile(os.path.join(directory_path, filename)):file_extension = filename.split('.')[-1]destination_directory = os.path.join(directory_path, file_extension)if not os.path.exists(destination_directory):os.makedirs(destination_directory)move(os.path.join(directory_path, filename), os.path.join(destination_directory, filename))```

说明:

此Python脚本根据文件扩展名将文件分类到子目录中,以组织目录中的文件。它识别文件扩展名并将文件移动到适当的子目录。这对于整理下载文件夹或组织特定项目的文件很有用。

1.2 删除空文件夹

```# Python script to remove empty folders in a directoryimport osdef remove_empty_folders(directory_path):for root, dirs, files in os.walk(directory_path, topdown=False):for folder in dirs:folder_path = os.path.join(root, folder)if not os.listdir(folder_path):                os.rmdir(folder_path)```

说明:

此Python脚本可以搜索并删除指定目录中的空文件夹。它可以帮助您在处理大量数据时保持文件夹结构的干净整洁。

1.3 重命名多个文件

```# Python script to rename multiple files in a directoryimport osdef rename_files(directory_path, old_name, new_name):    for filename in os.listdir(directory_path):        if old_name in filename:            new_filename = filename.replace(old_name, new_name)            os.rename(os.path.join(directory_path,filename),os.path.join(directory_path, new_filename))```

说明:

此Python脚本允许您同时重命名目录中的多个文件。它将旧名称和新名称作为输入,并将所有符合指定条件的文件的旧名称替换为新名称。

2. 使用Python进行网页抓取

2.1从网站提取数据

```# Python script for web scraping to extract data from a websiteimport requestsfrom bs4 import BeautifulSoupdef scrape_data(url):    response = requests.get(url)    soup = BeautifulSoup(response.text, 'html.parser')# Your code here to extract relevant data from the website```

说明:

此Python脚本利用requests和BeautifulSoup库从网站上抓取数据。它获取网页内容并使用BeautifulSoup解析HTML。您可以自定义脚本来提取特定数据,例如标题、产品信息或价格。

2.2从网站提取数据​​​​​​​​​​​​​​

```# Python script to download images in bulk from a websiteimport requestsdef download_images(url, save_directory):    response = requests.get(url)    if response.status_code == 200:        images = response.json() # Assuming the API returns a JSON array of image URLs        for index, image_url in enumerate(images):            image_response = requests.get(image_url)            if image_response.status_code == 200:                with open(f"{save_directory}/image_{index}.jpg", "wb") as f:                    f.write(image_response.content)```

说明:

此Python脚本旨在从网站批量下载图像。它为网站提供返回图像URL数组的JSON API。然后,该脚本循环访问URL并下载图像,并将其保存到指定目录。

2.3自动提交表单​​​​​​

```# Python script to automate form submissions on a websiteimport requestsdef submit_form(url, form_data):    response = requests.post(url, data=form_data)    if response.status_code == 200:    # Your code here to handle the response after form submission```

说明:

此Python脚本通过发送带有表单数据的POST请求来自动在网站上提交表单。您可以通过提供URL和要提交的必要表单数据来自定义脚本。

3. 文本处理和操作

3.1计算文本文件中的字数​​​​​​​

```# Python script to count words in a text filedef count_words(file_path):    with open(file_path, 'r') as f:        text = f.read()        word_count = len(text.split())    return word_count```

说明:

此Python脚本读取一个文本文件并计算它包含的单词数。它可用于快速分析文本文档的内容或跟踪写作项目中的字数情况。

3.2从网站提取数据​​​​​​​

```# Python script to find and replace text in a filedef find_replace(file_path, search_text, replace_text):    with open(file_path, 'r') as f:        text = f.read()        modified_text = text.replace(search_text, replace_text)    with open(file_path, 'w') as f:        f.write(modified_text)```

说明:

此Python脚本能搜索文件中的特定文本并将其替换为所需的文本。它对于批量替换某些短语或纠正大型文本文件中的错误很有帮助。

3.3生成随机文本​​​​​​​

```# Python script to generate random textimport randomimport stringdef generate_random_text(length):    letters = string.ascii_letters + string.digits + string.punctuation    random_text = ''.join(random.choice(letters) for i in range(length))    return random_text```

说明:

此Python脚本生成指定长度的随机文本。它可以用于测试和模拟,甚至可以作为创意写作的随机内容来源。

4.电子邮件自动化

4.1发送个性化电子邮件​​​​​​​

```# Python script to send personalized emails to a list of recipientsimport smtplibfrom email.mime.text import MIMETextfrom email.mime.multipart import MIMEMultipartdef send_personalized_email(sender_email, sender_password, recipients, subject, body):    server = smtplib.SMTP('smtp.gmail.com', 587)    server.starttls()    server.login(sender_email, sender_password)    for recipient_email in recipients:        message = MIMEMultipart()        message['From'] = sender_email        message['To'] = recipient_email        message['Subject'] = subject        message.attach(MIMEText(body, 'plain'))        server.sendmail(sender_email, recipient_email, message.as_string())    server.quit()```

说明:

此Python脚本使您能够向收件人列表发送个性化电子邮件。您可以自定义发件人的电子邮件、密码、主题、正文和收件人电子邮件列表。请注意,出于安全原因,您在使用Gmail时应使用应用程序专用密码。

4.2通过电子邮件发送文件附件​​​​​​​

```# Python script to send emails with file attachmentsimport smtplibfrom email.mime.multipart import MIMEMultipartfrom email.mime.base import MIMEBasefrom email import encodersdef send_email_with_attachment(sender_email,sender_password, recipient_email, subject, body, file_path):    server = smtplib.SMTP('smtp.gmail.com', 587)    server.starttls()    server.login(sender_email, sender_password)    message = MIMEMultipart()    message['From'] = sender_email    message['To'] = recipient_email    message['Subject'] = subject    message.attach(MIMEText(body, 'plain'))    with open(file_path, "rb") as attachment:        part = MIMEBase('application', 'octet-stream')        part.set_payload(attachment.read())        encoders.encode_base64(part)        part.add_header('Content-Disposition', f"attachment; filename= {file_path}")        message.attach(part)    server.sendmail(sender_email, recipient_email, message.as_string())    server.quit()```

说明:

此 Python 脚本允许您发送带有文件附件的电子邮件。只需提供发件人的电子邮件、密码、收件人的电子邮件、主题、正文以及要附加的文件的路径。

4.3自动邮件提醒​​​​​​​

```# Python script to send automatic email remindersimport smtplibfrom email.mime.text import MIMETextfrom datetime import datetime, timedeltadef send_reminder_email(sender_email, sender_password, recipient_email, subject, body, reminder_date):    server = smtplib.SMTP('smtp.gmail.com', 587)    server.starttls()    server.login(sender_email, sender_password)    now = datetime.now()    reminder_date = datetime.strptime(reminder_date, '%Y-%m-%d')    if now.date() == reminder_date.date():        message = MIMEText(body, 'plain')        message['From'] = sender_email        message['To'] = recipient_email        message['Subject'] = subject        server.sendmail(sender_email, recipient_email, message.as_string())    server.quit()```

说明:

此Python脚本根据指定日期发送自动电子邮件提醒。它对于设置重要任务或事件的提醒非常有用,确保您不会错过最后期限。

5.自动化Excel电子表格

5.1Excel读&写​​​​​​​​​​​​​​

```# Python script to read and write data to an Excel spreadsheetimport pandas as pddef read_excel(file_path):    df = pd.read_excel(file_path)    return dfdef write_to_excel(data, file_path):    df = pd.DataFrame(data)    df.to_excel(file_path, index=False)```

说明:

此Python脚本使用pandas库从Excel电子表格读取数据并将数据写入新的Excel文件。它允许您通过编程处理Excel文件,使数据操作和分析更加高效。

5.2数据分析和可视化​​​​​​​

```# Python script for data analysis and visualization with pandas and matplotlibimport pandas as pdimport matplotlib.pyplot as pltdef analyze_and_visualize_data(data):# Your code here for data analysis and visualization    pass```

说明:

此Python脚本使用pandas和matplotlib库来进行数据分析和可视化。它使您能够探索数据集、得出结论并得到数据的可视化表示。

5.3合并多个工作表​​​​​​​

```# Python script to merge multiple Excel sheets into a single sheetimport pandas as pddef merge_sheets(file_path, output_file_path):    xls = pd.ExcelFile(file_path)    df = pd.DataFrame()    for sheet_name in xls.sheet_names:        sheet_df = pd.read_excel(xls, sheet_name)        df = df.append(sheet_df)        df.to_excel(output_file_path, index=False)```

说明:

此Python脚本将Excel文件中多个工作表的数据合并到一个工作表中。当您将数据分散在不同的工作表中但想要合并它们以进行进一步分析时,这会很方便。

6.与数据库交互

6.1连接到一个数据库​​​​​​​

```# Python script to connect to a database and execute queriesimport sqlite3def connect_to_database(database_path):    connection = sqlite3.connect(database_path)    return connectiondef execute_query(connection, query):    cursor = connection.cursor()    cursor.execute(query)    result = cursor.fetchall()    return result```

说明:

此Python脚本允许您连接到SQLite数据库并执行查询。您可以使用适当的Python数据库驱动程序将其调整为与其他数据库管理系统(例如MySQL或PostgreSQL)配合使用。

6.2执行SQL查询​​​​​​​

```# Python script to execute SQL queries on a databaseimport sqlite3def execute_query(connection, query):    cursor = connection.cursor()    cursor.execute(query)    result = cursor.fetchall()    return result```

说明:

此Python脚本是在数据库上执行SQL查询的通用函数。您可以将查询作为参数与数据库连接对象一起传递给函数,它将返回查询结果。

6.3数据备份与恢复​​​​​​​

```import shutildef backup_database(database_path, backup_directory):    shutil.copy(database_path, backup_directory)def restore_database(backup_path, database_directory):    shutil.copy(backup_path, database_directory)```

说明:

此Python 脚本允许您创建数据库的备份并在需要时恢复它们。这是预防您的宝贵数据免遭意外丢失的措施。

7.社交媒体自动化

7.1发送个性化电子邮件​​​​​​​

```# Python script to automate posting on Twitter and Facebookfrom twython import Twythonimport facebookdef post_to_twitter(api_key, api_secret, access_token, access_token_secret, message):    twitter = Twython(api_key, api_secret, access_token, access_token_secret)    twitter.update_status(status=message)def post_to_facebook(api_key, api_secret, access_token, message):    graph = facebook.GraphAPI(access_token)    graph.put_object(parent_object='me', connection_name='feed', message=message)```

说明:

此 Python 脚本利用Twython和facebook-sdk库自动在Twitter和Facebook上发布内容。您可以使用它将 Python 脚本中的更新、公告或内容直接共享到您的社交媒体配置文件。

7.2社交媒体自动共享​​​​​​​

```# Python script to automatically share content on social media platformsimport randomdef get_random_content():# Your code here to retrieve random content from a list or databasepassdef post_random_content_to_twitter(api_key, api_secret, access_token, access_token_secret):content = get_random_content()post_to_twitter(api_key, api_secret, access_token, access_token_secret, content)def post_random_content_to_facebook(api_key, api_secret, access_token):content = get_random_content()post_to_facebook(api_key, api_secret, access_token, content)```

说明:

此Python 脚本自动在Twitter和Facebook上共享随机内容。您可以对其进行自定义,以从列表或数据库中获取内容并定期在社交媒体平台上共享。

7.3 抓取社交媒体数据​​​​​​​

```# Python script for scraping data from social media platformsimport requestsdef scrape_social_media_data(url):    response = requests.get(url)# Your code here to extract relevant data from the response```

说明:

此Python脚本执行网页抓取以从社交媒体平台提取数据。它获取所提供URL的内容,然后使用BeautifulSoup等技术来解析HTML并提取所需的数据。

8.自动化系统任务

8.1管理系统进程​​​​​​​

```# Python script to manage system processesimport psutildef get_running_processes():return [p.info for p in psutil.process_iter(['pid', 'name', 'username'])]def kill_process_by_name(process_name):for p in psutil.process_iter(['pid', 'name', 'username']):if p.info['name'] == process_name:p.kill()```

说明:

此Python 脚本使用 psutil 库来管理系统进程。它允许您检索正在运行的进程列表并通过名称终止特定进程。

8.2使用 Cron 安排任务​​​​​​​

```# Python script to schedule tasks using cron syntaxfrom crontab import CronTabdef schedule_task(command, schedule):cron = CronTab(user=True)job = cron.new(command=command)job.setall(schedule)cron.write()```

说明:

此Python 脚本利用 crontab 库来使用 cron 语法来安排任务。它使您能够定期或在特定时间自动执行特定命令。

8.3自动邮件提醒​​​​​​​

```# Python script to monitor disk space and send an alert if it's lowimport psutildef check_disk_space(minimum_threshold_gb):disk = psutil.disk_usage('/')free_space_gb = disk.free / (230) # Convert bytes to GBif free_space_gb < minimum_threshold_gb:# Your code here to send an alert (email, notification, etc.)pass```

说明:

此Python 脚本监视系统上的可用磁盘空间,并在其低于指定阈值时发送警报。它对于主动磁盘空间管理和防止由于磁盘空间不足而导致潜在的数据丢失非常有用。

9.自动化图像编辑

9.1图像大小调整和裁剪​​​​​​​

```# Python script to resize and crop imagesfrom PIL import Imagedef resize_image(input_path, output_path, width, height):    image = Image.open(input_path)    resized_image = image.resize((width, height), Image.ANTIALIAS)    resized_image.save(output_path)def crop_image(input_path, output_path, left, top, right, bottom):    image = Image.open(input_path)    cropped_image = image.crop((left, top, right, bottom))    cropped_image.save(output_path)```

说明:

此Python脚本使用Python图像库(PIL)来调整图像大小和裁剪图像。它有助于为不同的显示分辨率或特定目的准备图像。

9.2为图像添加水印​​​​​​​

```# Python script to add watermarks to imagesfrom PIL import Imagefrom PIL import ImageDrawfrom PIL import ImageFontdef add_watermark(input_path, output_path, watermark_text):image = Image.open(input_path)draw = ImageDraw.Draw(image)font = ImageFont.truetype('arial.ttf', 36)draw.text((10, 10), watermark_text, fill=(255, 255, 255, 128), font=font)image.save(output_path)```

说明:

此Python 脚本向图像添加水印。您可以自定义水印文本、字体和位置,以实现您图像的个性化。

9.3创建图像缩略图​​​​​​​

```# Python script to create image thumbnailsfrom PIL import Imagedef create_thumbnail(input_path, output_path, size=(128, 128)):image = Image.open(input_path)image.thumbnail(size)image.save(output_path)```

说明:

此Python 脚本从原始图像创建缩略图,这对于生成预览图像或减小图像大小以便更快地在网站上加载非常有用。

小结

以上是本文为您介绍的9个可以用于工作自动化的最佳Python脚本。在下篇中,我们将为您介绍网络自动化、数据清理和转换、自动化 PDF 操作、自动化GUI、自动化测试、自动化云服务、财务自动化、自然语言处理。

自动化不仅可以节省时间和精力,还可以降低出错风险并提高整体生产力。通过自定义和构建这些脚本,您可以创建定制的自动化解决方案来满足您的特定需求。

还等什么呢?立即开始使用Python 实现工作自动化,体验简化流程和提高效率的力量。

10.网络自动化

10.1检查网站状态​​​​​​​

```# Python script to check the status of a websiteimport requestsdef check_website_status(url):response = requests.get(url)if response.status_code == 200:# Your code here to handle a successful responseelse:# Your code here to handle an unsuccessful response```

说明:

此Python 脚本通过向提供的 URL 发送 HTTP GET 请求来检查网站的状态。它可以帮助您监控网站及其响应代码的可用性。

10.2自动 FTP 传输​​​​​​​

```# Python script to automate FTP file transfersfrom ftplib import FTPdef ftp_file_transfer(host, username, password, local_file_path, remote_file_path):with FTP(host) as ftp:ftp.login(user=username, passwd=password)with open(local_file_path, 'rb') as f:ftp.storbinary(f'STOR {remote_file_path}', f)```

说明:

此Python 脚本使用 FTP 协议自动进行文件传输。它连接到 FTP 服务器,使用提供的凭据登录,并将本地文件上传到指定的远程位置。

10.3网络配置设置​​​​​​​​​​​​​

```# Python script to automate network device configurationfrom netmiko import ConnectHandlerdef configure_network_device(host, username, password, configuration_commands):device = {'device_type': 'cisco_ios','host': host,'username': username,'password': password,}with ConnectHandler(device) as net_connect:net_connect.send_config_set(configuration_commands)```

说明:

此Python 脚本使用 netmiko 库自动配置网络设备,例如 Cisco路由器和交换机。您可以提供配置命令列表,此脚本将在目标设备上执行它们。

11. 数据清理和转换

11.1从数据中删除重复项​​​​​​​

```# Python script to remove duplicates from dataimport pandas as pddef remove_duplicates(data_frame):cleaned_data = data_frame.drop_duplicates()return cleaned_data```

说明:

此Python脚本能够利用 pandas 从数据集中删除重复行,这是确保数据完整性和改进数据分析的简单而有效的方法。

11.2数据标准化​​​​​​​

```# Python script for data normalizationimport pandas as pddef normalize_data(data_frame):normalized_data = (data_frame - data_frame.min()) / (data_frame.max() -  data_frame.min())return normalized_data```

说明:

此Python 脚本使用最小-最大标准化技术对数据进行标准化。它将数据集中的值缩放到 0 到 1 之间,从而更容易比较不同的特征。

11.3处理缺失值​​​​​​​

```# Python script to handle missing values in dataimport pandas as pddef handle_missing_values(data_frame):filled_data = data_frame.fillna(method='ffill')return filled_data```

说明:

此Python 脚本使用 pandas 来处理数据集中的缺失值。它使用前向填充方法,用先前的非缺失值填充缺失值。

12. 自动化 PDF 操作

12.1从PDF中提取文本​​​​​​​

```# Python script to extract text from PDFsimportPyPDF2def extract_text_from_pdf(file_path):with open(file_path, 'rb') as f:pdf_reader = PyPDF2.PdfFileReader(f)text = ''for page_num in range(pdf_reader.numPages):page = pdf_reader.getPage(page_num)text += page.extractText()return text```

说明:

此Python 脚本使用PyPDF2库从PDF文件中提取文本。它读取PDF的每一页并将提取的文本编译为单个字符串。

12.2合并多个PDF​​​​​​​

```# Python script to merge multiple PDFs into a single PDFimport PyPDF2def merge_pdfs(input_paths, output_path):pdf_merger = PyPDF2.PdfMerger()for path in input_paths:with open(path, 'rb') as f:pdf_merger.append(f)with open(output_path, 'wb') as f:pdf_merger.write(f)```

说明:

此Python脚本将多个PDF文件合并为一个PDF文档。它可以方便地将单独的PDF、演示文稿或其他文档合并为一个统一的文件。

12.3添加密码保护​​​​​​​

```# Python script to add password protection to a PDFimport PyPDF2def add_password_protection(input_path, output_path, password):with open(input_path, 'rb') as f:pdf_reader = PyPDF2.PdfFileReader(f)pdf_writer = PyPDF2.PdfFileWriter()for page_num in range(pdf_reader.numPages):page = pdf_reader.getPage(page_num)pdf_writer.addPage(page)pdf_writer.encrypt(password)with open(output_path, 'wb') as output_file:pdf_writer.write(output_file)```

说明:

此Python脚本为PDF文件添加密码保护。它使用密码对PDF进行加密,确保只有拥有正确密码的人才能访问内容。

13. 自动化GUI 

13.1自动化鼠标和键盘​​​​​​​

```# Python script for GUI automation using pyautoguiimport pyautoguidef automate_gui():# Your code here for GUI automation using pyautoguipass```

说明:

此Python 脚本使用 pyautogui 库,通过模拟鼠标移动、单击和键盘输入来自动执行 GUI 任务。它可以与 GUI 元素交互并执行单击按钮、键入文本或导航菜单等操作。

13.2创建简单的 GUI 应用程序​​​​​​​

```# Python script to create simple GUI applications using tkinterimport tkinter as tkdef create_simple_gui():# Your code here to define the GUI elements and behaviorpass```

说明:

此Python 脚本可以使用 tkinter 库创建简单的图形用户界面 (GUI)。您可以设计窗口、按钮、文本字段和其他 GUI 元素来构建交互式应用程序。

13.3处理GUI事件​​​​​​​

```# Python script to handle GUI events using tkinterimport tkinter as tkdef handle_gui_events():passdef on_button_click():# Your code here to handle button click eventroot = tk.Tk()button = tk.Button(root, text="Click Me", command=on_button_click)button.pack()root.mainloop()```

说明:

此Python 脚本演示了如何使用 tkinter 处理 GUI 事件。它创建一个按钮小部件并定义了一个回调函数,该函数将在单击按钮时执行。

14. 自动化测试

14.1使用 Python 进行单元测试​​​​​​

```# Python script for unit testing with the unittest moduleimport unittestdef add(a, b):return a + bclass TestAddFunction(unittest.TestCase):def test_add_positive_numbers(self):self.assertEqual(add(2, 3), 5)def test_add_negative_numbers(self):self.assertEqual(add(-2, -3), -5)def test_add_zero(self):self.assertEqual(add(5, 0), 5)if __name__ == '__main__':unittest.main()```

说明:

该Python脚本使用unittest模块来执行单元测试。它包括add 函数的测试用例,用正数、负数和零值检查其行为。

14.2用于 Web 测试的 Selenium​​​​​​​

```# Python script for web testing using Seleniumfrom selenium import webdriverdef perform_web_test():driver = webdriver.Chrome()driver.get("https://www.example.com")# Your code here to interact with web elements and perform testsdriver.quit()```

说明:

此Python 脚本使用 Selenium 库来自动化 Web 测试。它启动 Web 浏览器,导航到指定的 URL,并与 Web 元素交互以测试网页的功能。

14.3测试自动化框架​​​​​​​

```# Python script for building test automation frameworks# Your code here to define the framework architecture and tools```

说明:

构建测试自动化框架需要仔细的规划和组织。该脚本是一个创建自定义的、适合您的特定项目需求的测试自动化框架的起点。它涉及定义架构、选择合适的工具和库以及创建可重用的测试函数。

15. 自动化云服务

15.1向云空间上传文件​​​​​​​

```# Python script to automate uploading files to cloud storage# Your code here to connect to a cloud storage service (e.g., AWS S3, Google Cloud Storage)# Your code here to upload files to the cloud storage```

说明:

自动将文件上传到云存储的过程可以节省时间并简化工作流程。利用相应的云服务API,该脚本可作为将云存储功能集成到 Python 脚本中的起点。

15.2管理AWS资源​​​​​​​

```# Python script to manage AWS resources using Boto3import boto3def create_ec2_instance(instance_type, image_id, key_name, security_group_ids):ec2 = boto3.resource('ec2')instance = ec2.create_instances(ImageId=image_id,InstanceType=instance_type,KeyName=key_name,SecurityGroupIds=security_group_ids,MinCount=1,MaxCount=1)return instance[0].id ```

说明:

此Python 脚本使用 Boto3 库与 Amazon Web Services (AWS) 交互并创建 EC2 实例。它可以扩展以执行各种任务,例如创建 S3 buckets、管理 IAM 角色或启动 Lambda 函数。

15.3自动化 Google 云端硬盘​​​​​​​

```# Python script to automate interactions with Google Drive# Your code here to connect to Google Drive using the respective API# Your code here to perform tasks such as uploading files, creating folders, etc.```

说明:

以编程方式与Google Drive 交互可以简化文件管理和组织。该脚本可以充当一个利用 Google Drive API 将 Google Drive 功能集成到 Python 脚本中的起点。

16. 财务自动化

16.1分析股票价格​​​​​​​

```# Python script for stock price analysis# Your code here to fetch stock data using a financial API (e.g., Yahoo Finance)# Your code here to analyze the data and derive insights```

说明:

自动化获取和分析股票价格数据的过程对投资者和金融分析师来说是十分有益的。该脚本可作为一个使用金融 API 将股票市场数据集成到 Python 脚本中的起点。

16.2货币汇率​​​​​​​

```# Python script to fetch currency exchange rates# Your code here to connect to a currency exchange API (e.g., Fixer.io, Open Exchange Rates)# Your code here to perform currency conversions and display exchange rates```

说明:

此Python 脚本利用货币兑换 API 来获取和显示不同货币之间的汇率。它可用于财务规划、国际贸易或旅行相关的应用程序。

16.3预算追踪​​​​​​​

```# Python script for budget tracking and analysis# Your code here to read financial transactions from a CSV or Excel file# Your code here to calculate income, expenses, and savings# Your code here to generate reports and visualize budget data```

说明:

此Python 脚本使您能够通过从 CSV 或 Excel 文件读取财务交易来跟踪和分析预算。它反映有关收入、支出和储蓄的情况,帮助您作出明智的财务决策。

17. 自然语言处理

17.1情感分析​​​​​​​

```# Python script for sentiment analysis using NLTK or other NLP librariesimportnltkfromnltk.sentiment import SentimentIntensityAnalyzerdefanalyze_sentiment(text):nltk.download('vader_lexicon')sia = SentimentIntensityAnalyzer()sentiment_score = sia.polarity_scores(text)return sentiment_score```

说明:

此Python 脚本使用 NLTK 库对文本数据进行情感分析。它计算情绪分数,这个分数表示所提供文本的积极性、中立性或消极性。

17.2文本摘要​​​​​​​

```# Python script for text summarization using NLP techniques# Your code here to read the text data and preprocess it (e.g., removing stop words)# Your code here to generate the summary using techniques like TF-IDF, TextRank, or BERT```

说明:

文本摘要自动执行为冗长的文本文档创建简洁摘要的过程。该脚本可作为使用NLP 库实现各种文本摘要技术的起点。

17.3语言翻译​​​​​​​

```# Python script for language translation using NLP libraries# Your code here to connect to a translation API (e.g., Google Translate, Microsoft Translator)# Your code here to translate text between different languages```

说明:

自动化语言翻译可以促进跨越语言障碍的沟通。该脚本可适配连接各种翻译API并支持多语言通信。

 

总结:

感谢每一个认真阅读我文章的人!!!

作为一位过来人也是希望大家少走一些弯路,如果你不想再体验一次学习时找不到资料,没人解答问题,坚持几天便放弃的感受的话,在这里我给大家分享一些自动化测试的学习资源,希望能给你前进的路上带来帮助。

  1. 文档获取方式:

  2. 加入我的软件测试交流群:680748947免费获取~(同行大佬一起学术交流,每晚都有大佬直播分享技术知识点)

这份文档,对于想从事【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!

以上均可以分享,只需要你搜索vx公众号:程序员雨果,即可免费领取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/12239.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决webstorm没有vue语法提示;webstorm没有代码提示

解决webstorm没有vue语法提示&#xff1b;webstorm没有代码提示 使用webstorm 2023.x 开发vue项目。发现死活没有vue语法提示&#xff0c;即便是npm install、清理缓存。对比其他vue项目却有语法提示&#xff0c;最后发现依赖库被忽略了&#xff1a; 删除掉node_modules 的忽略…

每日一学—K邻算法:在风险传导中的创新应用与实践价值

文章目录 &#x1f4cb; 前言&#x1f3af; K邻算法的实践意义&#x1f3af; 创新应用与案例分析&#x1f525; 参与方式 &#x1f4cb; 前言 在当今工业领域&#xff0c;图思维方式与图数据技术的应用日益广泛&#xff0c;成为图数据探索、挖掘与应用的坚实基础。本文旨在分享…

【C/C++笔试练习】DNS劫持、三次握手、TCP协议、HTTPS、四次挥手、HTTP报文、拥塞窗口、POP3协议、UDP协议、收件人列表、养兔子

文章目录 C/C笔试练习选择部分&#xff08;1&#xff09;DNS劫持&#xff08;2&#xff09;三次握手&#xff08;3&#xff09;TCP协议&#xff08;4&#xff09;HTTPS&#xff08;5&#xff09;四次挥手&#xff08;6&#xff09;HTTP报文&#xff08;7&#xff09;拥塞窗口&a…

商务分析方法与工具(八):Python的趣味快捷-年少不知numpy好,再见才觉很简单

Tips&#xff1a;"分享是快乐的源泉&#x1f4a7;&#xff0c;在我的博客里&#xff0c;不仅有知识的海洋&#x1f30a;&#xff0c;还有满满的正能量加持&#x1f4aa;&#xff0c;快来和我一起分享这份快乐吧&#x1f60a;&#xff01; 喜欢我的博客的话&#xff0c;记得…

MySQL数据库核心面试题

数据库中的引擎 常用的引擎有InnoDB、MyIsam、Memory三种。 MyIsam&#xff1a;组织形式分为三种&#xff1a; frm文件存储表结构、MyData文件存储表中的数据、MyIndex文件存储表的索引数据。是分开存储的。 Memory&#xff1a;基于内存的&#xff0c;访问速度快&#xff0…

算法_前缀和

DP34 【模板】前缀和 import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别int n in.nextInt(),q in.ne…

JavaFX布局-HBox

JavaFX布局-HBox 常用属性alignmentspacingchildrenmarginpaddinghgrow 实现方式Java实现Xml实现 综合案例 HBox按照水平方向排列其子节点改变窗口大小,不会该部整体布局窗口太小会遮住内部元素&#xff0c;不会产生滚动条 常用属性 alignment 对齐方式 new HBox().setAlign…

RT Thread + CLion环境搭建

RT Thread CLion环境搭建 0.前言一、准备工具1. Env RT Thread v5.12.CLion安装3.编译及下载工具 二、新建Env工程三、CLion配置四、运行测试 0.前言 事情的起因是最近在使用RT Thread Studio时&#xff0c;发现默认的 rtt 内核版本及交叉编译链版本都过于陈旧&#xff0c;于…

《无畏契约》游戏画面出现“撕裂感“,你清楚背后的原理吗?

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (91平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

信息化总体架构方法_2.信息化工程建设方法

1.信息化架构模式 信息化架构一般有两种模式&#xff0c;一种是数据导向架构&#xff0c;一种是流程导向架构。对于数据导向架构重点是在数据中心&#xff0c;BI商业智能等建设中使用较多&#xff0c;关注数据模型和数据质量&#xff1b;对于流程导向架构&#xff0c;SOA本身就…

黑马程序员鸿蒙HarmonyOS端云一体化开发【13-15】

前置知识&#xff1a;arkts 一套开发工具&#xff0c;一套语言&#xff0c;搞定客户端和云端两个的编写。其中application就是客户端&#xff0c;cloudProgram就是云端。 开发人员->全栈开发工程师&#xff0c;降低了开发成本&#xff0c;且提供了很多现成的云服务&#xf…

AI原生实践:测试用例创作探索

测试用例作为质量保障的核心&#xff0c;影响着研发-测试-发布-上线的全过程&#xff0c;如单元测试用例、手工测试用例、接口自动化用例、UI 自动化用例等&#xff0c;但用例撰写的高成本尤其是自动化用例&#xff0c;导致了用例的可持续积累、更新和迭代受到非常大制约。长久…

【JS面试题】原型原型链

一、面试真题展示&#xff1a; 1. 如何准确判断一个变量是不是数组&#xff1f; ① 使用instanceof进行判断&#xff1a;a instanceof Array ② 使用Array.isArray()进行判断&#xff1a;Array.isArray(a) 2. 手写一个简易的jQuery&#xff0c;考虑插件和扩展性&#xff1f; …

内网工具之LDP的使用

LDP 是微软自带的一款活动目录信息查询工具&#xff0c;在域控的 cmd 窗口执行 ldp 命令即可打开 LDP 工具。普通域成员主机默认是没有 LDP 工具的&#xff0c;可以自行上传ldp.exe 工具上去查询活动目录信息。不在域内的机器&#xff0c;也可以通过上传 ldp.exe 工具上去执行。…

tomcat--目录结构和文件组成

目录结构 目录说明bin服务启动&#xff0c;停止等相关程序和文件conf配置文件lib库目录logs日志记录webapps应用程序&#xff0c;应用部署目录workjsp编译后的结果文件&#xff0c;建议提前预热访问 /usr/local/apache-tomcat-8.5.100/work/Catalina/localhost/ROOT/org/apac…

PingCAP 戴涛:构建面向未来的金融核心系统

作者&#xff1a;戴涛 导读 近日&#xff0c;平凯星辰解决方案技术部总经理戴涛在 2024 数据技术嘉年华活动中&#xff0c;做了主题为“构建面向未来的金融核心系统”的分享&#xff0c;本文为戴涛演讲实录的全文。 文章分析了中国金融行业的发展趋势&#xff0c;并且基于这…

算法提高之加成序列

算法提高之加成序列 核心思想&#xff1a;迭代加深 dfs 从上往下逐渐增大depth 这样下面没有用的方案就不用遍历了 #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N 110;int n;int path[N];//当前求哪个位置…

PDF编辑阅读器PDF Expert for Mac v3.10.1中文激活版

PDF Expert for Mac是一款易于使用的 PDF 编辑器和注释器&#xff0c;专为 Mac 设备设计。它允许用户轻松查看、编辑、签名、注释和共享 PDF。该软件使用户能够向他们的 PDF 添加文本、图像、链接和形状&#xff0c;突出显示和标记文本&#xff0c;填写表格以及签署数字文档。它…

STL----resize

resize的作用 设置容器元素个数和初始值。 resize和reserve resize即改变容器元素个数&#xff0c;也改变容器容量。 reserve只改变容器容量&#xff0c;不改变容器元素个数。 reserve有什么用 reserve---存储&#xff0c;容量&#xff0c;保留。 1&#xff0c;设置容器容…

Python实现麦克风录音保存到wav

功能展示&#xff1a; 运行环境&#xff1a; Python: 3.10.4 64-bit 操作系统&#xff1a; 截图环境&#xff1a;win10 64-bit 视频录屏环境&#xff1a;win10 64-bit 功能说明&#xff1a; 点击界面开始按钮开始录音&#xff0c;点击停止按钮结束录音。 源码文件列表&…