基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)
大家继续看 https://lilianweng.github.io/posts/2023-06-23-agent/的文档内容

第二部分:内存

记忆的类型

记忆可以定义为用于获取、存储、保留以及随后检索信息的过程。人脑中有多种记忆类型。

  • 感觉记忆:这是记忆的最早阶段,提供在原始刺激结束后保留​​感觉信息(视觉、听觉等)印象的能力。感觉记忆通常只能持续几秒钟。子类别包括图像记忆(视觉)、回声记忆(听觉)和触觉记忆(触摸)。

  • 短期记忆(STM)或工作记忆:它存储我们当前意识到的以及执行学习和推理等复杂认知任务所需的信息。短期记忆被认为具有大约 7 个项目的容量(Miller 1956)并持续 20-30 秒。

  • 长期记忆(LTM):长期记忆可以存储相当长的时间信息,从几天到几十年不等,存储容量基本上是无限的。 LTM 有两种类型:

    1、外显/陈述性记忆:这是对事实和事件的记忆,是指那些可以有意识地回忆起来的记忆,包括情景记忆(事件和经历)和语义记忆(事实和概念)。

    2、 内隐/程序性记忆:这种类型的记忆是无意识的,涉及自动执行的技能和例程,例如骑自行车或在键盘上打字。

在这里插入图片描述

  • 感觉记忆:作为原始输入的学习嵌入表示,包括文本、图像或其他形式;
  • 短期记忆:作为情境学习。它是短且有限的,因为它受到 Transformer 有限上下文窗口长度的限制。
  • 长期记忆:作为代理在查询时可以处理的外部向量存储,可通过快速检索进行访问。

最大内积搜索 (MIPS)

MIPS: Maximum Inner Product Search,MIPS

外部记忆可以缓解有限注意力广度的限制。标准做法是将信息的嵌入表示保存到向量存储数据库中,该数据库可以支持快速最大内积搜索(MIPS)。为了优化检索速度,常见的选择是近似最近邻 (ANN)​算法返回大约前 k 个最近邻,以牺牲一点精度来换取巨大的加速。

用于快速 MIPS 的 ANN 算法的几种常见选择:

  • LSH(Locality-Sensitive Hashing):它引入了一种哈希函数,使得相似的输入项以高概率映射到相同的桶,其中桶的数量远小于输入的数量。
  • ANNOY (Approximate Nearest Neighbors Oh Yeah):核心数据结构是随机投影树,一组二叉树,其中每个非叶节点代表一个将输入空间分成两半的超平面,每个叶存储一个数据点。树是独立且随机构建的,因此在某种程度上,它模仿了哈希函数。 ANNOY 搜索发生在所有树中,迭代地搜索最接近查询的一半,然后聚合结果。这个想法与 KD 树非常相关,但更具可扩展性。
  • HNSW (Hierarchical Navigable Small World) :它受到小世界网络思想的启发,其中大多数节点可以在少量步骤内被任何其他节点到达;例如社交网络的“六度分离”特征。 HNSW 构建这些小世界图的层次结构,其中底层包含实际数据点。中间的层创建快捷方式以加快搜索速度。执行搜索时,HNSW 从顶层的随机节点开始,导航至目标。当它无法靠近时,它会向下移动到下一层,直到到达最底层。上层中的每个移动都可能覆盖数据空间中的很长一段距离,而下层中的每个移动都可以细化搜索质量。
  • FAISS(Facebook AI相似性搜索):它的运行假设是在高维空间中,节点之间的距离遵循高斯分布,因此应该存在数据点的聚类。 FAISS 通过将向量空间划分为簇,然后在簇内细化量化来应用向量量化。搜索首先使用粗量化来查找簇候选,然后进一步使用更精细的量化来查找每个簇。
  • ScaNN(可扩展最近邻):ScaNN的主要创新是向量量化。它量化数据点到使得内积与原来的距离相似尽可能,而不是选择最接近的量化质心点。

在这里插入图片描述

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/10704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac 使用:Micosoft Remote Desktop 远程优化

Micosoft Remote Desktop远程优化 服务器 远程会话环境设置 WinR打开运行,输入gpedit.msc 找到计算机配置->管理模板->Windows组件->远程桌面服务->远程桌面会话主机->远程会话环境。下面这几个打开,有效提高rdp性能。 rdp协议同时使用…

自动驾驶---Behavior Planning之EUDM

1 背景 在前面的博客中,为读者朋友们阐述了自动驾驶Planning模块基于MCTS行为规划的文章《自动驾驶---Behavior Planning之MCTS》,博客中引用的论文的主要思想是以蒙特卡洛树来实现行为规划。今天,我们继续探寻另一种行为规划的策略,主角依然是香港科技大学。 熟悉的读者大…

vim 文件内容替换 cat 合并文件

vim 文件内容替换 第一步:首先要进入末行模式(在命令模式下输入冒号:) 第二步:根据需求替换内容 ① 只替换光标所在这一行的第一个满足条件的结果(只能替换1次) :s/要替换的关键词/替换后的关键词 回…

计数排序,基数排序,桶排序

目录 计数排序: 基数排序: 桶排序: 计数排序: 计数排序是一种非比较型整数排序算法,特别适用于一定范围内的整数排序。它的核心思想是使用一个额外的数组(称为计数数组)来计算每个值的出现次数,然后根据这些计数信…

C语言中错误处理的基本实现

引入头文件依赖&#xff1a; 标准输入输出流&#xff1a;#include <stdio.h>获取错误信息&#xff1a;#include <string.h>&#xff0c;strerror通过这个头文件获取文件流&#xff1a;#include <stdlib.h>&#xff0c;fprintf通过这个头文件获取错误编号&…

hadoop生态圈集群搭建(持续更新240512)

Hadoop生态圈 Linux1.修改ip地址2.重启network服务3.安装插件4.关闭防火墙5.创建用户6.创建目录7.修改目录的所属主和所属组为lxy8.修改主机名:hadoop102 (注意名字后面不要加空格)9.修改hosts文件10.等插件都装完后再重启Linux11.把xshell的登录用户换成lxy &#xff08;注意&…

【TC3xx芯片】TC3xx芯片时钟监控

目录 前言 正文 1.时钟监控概念 1.1 时钟监控原理 1.2时钟监控配置寄存器

Node.js 的补充适用场景

Node.js 的适用场景相当广泛&#xff0c;以下再补充一些具体的使用场景&#xff1a; 服务器端应用开发&#xff1a; Node.js特别适合于构建高性能、高并发、低延迟的服务器端程序。它可以用来开发Web服务器、API服务器、实时通讯服务器等。Node.js的高性能和事件驱动的非阻塞I…

day09-常用API异常

1.时间日期类 1.1 Date类&#xff08;应用&#xff09; 计算机中时间原点 1970年1月1日 00:00:00 时间换算单位 1秒 1000毫秒 Date类概述 Date 代表了一个特定的时间&#xff0c;精确到毫秒 Date类构造方法 方法名说明public Date()分配一个 Date对象&#xff0c;并初始化…

【大数据】HDFS

文章目录 [toc]HDFS 1.0NameNode维护文件系统命名空间存储元数据解决NameNode单点问题 SecondaryNameNode机架感知数据完整性校验校验和数据块检测程序DataBlockScanner HDFS写流程HDFS读流程HDFS与MapReduce本地模式Block大小 HDFS 2.0NameNode HANameNode FederationHDFS Sna…

使用注解的方式进行配置RabbitMQ

引入依赖&#xff1a; <dependency><groupId>org.springframework.amqp</groupId><artifactId>spring-rabbit-test</artifactId><scope>test</scope></dependency> 配置application.yml server:port: 8082 spring:rabbitmq…

pyqt5报错:AttributeError: ‘mywindow‘ object has no attribute ‘setCentralWidget‘

第一种解决方法是&#xff1a;AttributeError: ‘mywindow‘ object has no attribute ‘setCentralWidget‘_attributeerror: mywindow object has no attribute-CSDN博客 第二种解决方法是&#xff08;推荐&#xff09;&#xff1a; 直接把这段代码复制在 ui转 py文件的后面…

什么是JVM中的程序计数器

在计算机的体系结构中&#xff1a; 程序计数器&#xff08;Program Counter&#xff09;&#xff0c;通常缩写为 PC&#xff0c;是计算机体系结构中的一个寄存器&#xff0c;用于存储下一条指令的地址。程序计数器是控制单元的一部分&#xff0c;它的作用是确保程序能够按正确…

用 Python 和 AkShare 进行个股数据清洗:简易多功能方法

标题:用 Python 和 AkShare 进行个股数据清洗:简易多功能方法 简介: 本文介绍了如何使用 Python 和 AkShare 库对个股数据进行清洗和处理。个股数据经常需要进行清洗以用于分析、建模或可视化。我们将介绍一些简单但功能强大的方法,包括数据加载、缺失值处理、重复值检测和…

心理应用工具包 psychtoolbox 绘制小球走迷宫

psychtoolbox 是 MATLAB 中的一个工具包&#xff0c;对于科研人员设计实验范式来说是不二之选&#xff0c;因为它可以操作计算机的底层硬件&#xff0c;精度可以达到帧的级别。 文章目录 一、实验目的二、psychtoolbox 的下载安装三、Psychtoolbox 的基本使用四、完整代码 一、…

不同数据类型的内部秘密----编程内幕(2)

Q&#xff1a; char类型是如何被当成int处理的&#xff1f; A: 我们可以看看char类型变量在何时才会被当做int处理. #include <stdio.h>int main() {char ch;ch a;printf("%c\n", ch);return 0; } 汇编代码如下&#xff1a; hellomain:0x100000f60 <0&…

修改了环境变量~/.bashrc后 报错 命令 “dirname” 可在以下位置找到 * /bin/dirname * /usr/bin/dirname

问题如下&#xff1a; 修改了~/.bashrc后加入了环境变量之后报错&#xff0c;如下所示 (base) jiedell:~/桌面$ source ~/.bashrc 命令 “dirname” 可在以下位置找到 * /bin/dirname * /usr/bin/dirname 由于 /usr/bin:/bin 不在 PATH 环境变量中&#xff0c;故无法找到该…

在Linux上安装并启动Redis

目录 安装gcc环境 上传redis文件方法一&#xff1a;sftp 上传redis文件方法二&#xff1a;wget 启动redis-server ctrlc关闭redis-server 参考文章&#xff1a;Linux 安装 Redis 及踩坑 - 敲代码的阿磊 - 博客园 (cnblogs.com) 准备&#xff1a;打开VMware Workstation&am…

pair对组创建

创建方式1: pair<type,type> p(value1,value2); pair<string, int> p("Tom", 20); cout << "name:" << p.first << "age:" << p.second << endl; 创建方式2: pair<type,type> pmake_pair(v…

mysql权限分类

USAGE --无权限,只有登录数据库,只可以使用test或test_*数据库 ALL --所有权限 select/update/delete/super/slave/reload --指定的权限 with grant option --允许把自己的权限授予其它用户(此用户拥有建立账号的权限) 权限级别&#xff1a; 1、. &#xff0d;&#xff0d;全…