模拟集成电路(3)----单级放大器(共源极)

模拟集成电路(3)----单级放大器(共源极)

放大是模拟电路的基本功能

  • 大多数自然模拟信号太小而无法处理
  • 需要足够的信噪比

理想的放大器

  • 线性:无限的幅度和频率范围

  • 输入阻抗无限大

  • 输出阻抗无限小

共源放大器

共源放大器就是将源极接AC ground。

image-20240505210435115

一般我们对三点进行分析:

  1. 直流摆幅有多大(饱和区)
  2. 小信号的增益
  3. 输入输出的阻抗

电阻负载

image-20240505210853242
大信号分析
  • V i n < V T H , c u t o f f V_{in}<V_{TH},\mathrm{~cut~off} Vin<VTH, cut off

V o u t = V D D V_{out}=V_{DD} Vout=VDD

  • V i n − V T H ≤ V o u t , saturation V_{in}-V_{TH}\leq V_{out,}\text{saturation} VinVTHVout,saturation(一般只考虑饱和区)

V o u t = V D D − I d ⋅ R D = V D D − μ n C o x 2 W L ( V i n − V T H ) 2 ⋅ R D \begin{aligned}&V_{out}=V_{DD}-I_{d}\cdot R_{D}\\&=V_{DD}-\frac{\mu_{n}C_{ox}}{2}\frac{W}{L}(V_{in}-V_{TH})^{2}\cdot R_{D}\end{aligned} Vout=VDDIdRD=VDD2μnCoxLW(VinVTH)2RD

  • V i n − V T H > V o u t , triode V_{in}-V_{TH}>V_{out,}\text{triode} VinVTH>Vout,triode
小信号增益

大信号的斜率就是小信号的增益
V o u t = V D D − μ n C o x 2 W L ( V i n − V T H ) 2 ⋅ R D V_{out}=V_{DD}-\frac{\mu_{n}C_{ox}}{2}\frac{W}{L}\left(V_{in}-V_{TH}\right)^{2}\cdot R_{D} Vout=VDD2μnCoxLW(VinVTH)2RD

A v = ∂ V o u t ∂ V i n = − μ n C o x W L ( V i n − V T H ) ⋅ R D A_{v}=\frac{\partial V_{out}}{\partial V_{in}}=-\boxed{\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{TH})}\cdot R_{D} Av=VinVout=μnCoxLW(VinVTH)RD

框出的部分即为跨导
A v = ∂ V o u t ∂ V i n = − g m ⋅ R D A_v=\frac{\partial V_{out}}{\partial V_{in}}=-\boxed{g_m}\cdot R_D Av=VinVout=gmRD
发现,不同的 V i n V_{in} Vin的值会影响增益的值,

  • 小信号等效电路

image-20240505212431271
{ ν o u t = − i d R D i d = g m ν i n \begin{cases} \begin{aligned}&\nu_{out}=-i_{d}R_{D}\\&i_{d}=g_{m}\nu_{in}\end{aligned} \end{cases} {νout=idRDid=gmνin

A ν = ν o u t ν i n = − g m R D A_{\nu}=\frac{\nu_{out}}{\nu_{in}}=-g_{m}R_{D} Aν=νinνout=gmRD

  • 考虑沟道长度调制效应

image-20240505212804470

{ ν o u t = − i d ( R D ∥ r o ) i d = g m ν i n \begin{cases} \begin{aligned}&\nu_{out}=-i_{d}(R_{D}\parallel r_{o})\\&i_{d}=g_{m}\nu_{in}\end{aligned} \end{cases} {νout=id(RDro)id=gmνin
根据常识有 R D ≪ r o R_D \ll r_o RDro
A ν = − g m ⋅ ( R D ∥ r o ) ≈ − g m ⋅ R D \begin{aligned}A_{\nu}&=-g_{m}\cdot(R_{D}\parallel r_{o})\\&\approx-g_{m}\cdot R_{D}\end{aligned} Aν=gm(RDro)gmRD

输入输出阻抗

r i n = ν i n i i n = ∞ r_{in}=\frac{\nu_{in}}{i_{in}}=\infty rin=iinνin=

r o u t = r o ∥ R D ≈ R D r_{out}=r_{o}\parallel R_{D}\approx R_{D} rout=roRDRD

image-20240505214020780

V D S = V i n 1 − V T H V_{\mathrm{DS}}=V_{\mathrm{in}1}-V_{\mathrm{TH}} VDS=Vin1VTH

V i n 1 − V T H = V D D − μ n C o x 2 W L ( V i n 1 − V T H ) 2 ⋅ R D V_{\mathrm{in1}}-V_{\mathrm{TH}}=V_{\mathrm{DD}}-\frac{\mu_{\mathrm{n}}C_{\mathrm{ox}}}{2}\frac{W}{L}(V_{\mathrm{in1}}-V_{\mathrm{TH}})^{2}\cdot R_{\mathrm{D}} Vin1VTH=VDD2μnCoxLW(Vin1VTH)2RD

可以得到 V i n 1 V_{in1} Vin1 R D R_D RD的一个函数。

R D R_D RD越大会导致 V i n 1 V_{in1} Vin1越小

image-20240505214425675

二极管接法负载

image-20240505214531645

image-20240505214452023

在M1和M2的电流是一样的,于是我们可以列出如下等式:

image-20240505214723084

1 2 μ n C o x ( W L ) 1 ( V i n − V T H 1 ) 2 = 1 2 μ n C o x ( W L ) 2 ( V D D − V o u t − V T H 2 ) 2 \begin{aligned}&\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}\left(V_{in}-V_{TH1}\right)^{2}\\&=\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}\left(V_{DD}-V_{out}-V_{TH2}\right)^{2}\end{aligned} 21μnCox(LW)1(VinVTH1)2=21μnCox(LW)2(VDDVoutVTH2)2

( W L ) 1 ( V i n − V T H 1 ) = ( W L ) 2 ( V D D − V o u t − V T H 2 ) \sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in}-V_{TH1})=\sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD}-V_{out}-V_{TH2}) (LW)1 (VinVTH1)=(LW)2 (VDDVoutVTH2)

可得 V i n V_{in} Vin V o u t V_{out} Vout几乎是一个线性关系,如果两个晶体管的 V T H V_{TH} VTH不变,那么可以认作是线性关系。

image-20240505215109485

由于有电容的存在,所以 V o u t V_{out} Vout并不是直接变大。

大信号分析

image-20240505220044467
小信号增益

( W L ) 1 ( V i n − V T H 1 ) = ( W L ) 2 ( V D D − V o u t − V T H 2 ) \sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in}-V_{TH1})=\sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD}-V_{out}-V_{TH2}) (LW)1 (VinVTH1)=(LW)2 (VDDVoutVTH2)

( W L ) 1 = ( W L ) 2 ( − ∂ V o u t ∂ V i n − ∂ V T H 2 ∂ V i n ) \sqrt{\left(\frac{W}{L}\right)_1}=\sqrt{\left(\frac{W}{L}\right)_2}(-\frac{\partial V_{out}}{\partial V_{in}}-\boxed{ \frac{\partial V_{TH2}}{\partial V_{in}}}) (LW)1 =(LW)2 (VinVoutVinVTH2)

框住的为 M 2 M_2 M2的体效应
∂ V T H 2 ∂ V i n = ∂ V T H 2 ∂ V o u t ⋅ ∂ V o u t ∂ V i n = η ⋅ ∂ V o u t ∂ V i n \frac{\partial V_{TH2}}{\partial V_{in}}=\frac{\partial V_{TH2}}{\partial V_{out}}\cdot\frac{\partial V_{out}}{\partial V_{in}}=\eta\cdot\frac{\partial V_{out}}{\partial V_{in}} VinVTH2=VoutVTH2VinVout=ηVinVout
得到增益:
A ν = ∂ V o u t ∂ V i n = − ( W / L ) 1 ( W / L ) 2 ⋅ 1 1 + η A_{\nu}=\frac{\partial V_{out}}{\partial V_{in}}=-\sqrt{\frac{\left(W/L\right)_{1}}{\left(W/L\right)_{2}}}\cdot\frac{1}{1+\eta} Aν=VinVout=(W/L)2(W/L)1 1+η1

小信号模型

小信号模型增益
image-20240505221313667

i x = v x / r o + g m v 1 v 1 = v x } → r e q = v x i x = r o ∥ 1 g m ≈ 1 g m \begin{aligned}&i_{x}=v_{x}/r_{o}+g_{m}v_{1}\\&v_{1}=v_{x}\end{aligned}\biggr\}\to r_{eq}=\frac{v_{x}}{i_{x}}=r_{o}\parallel\frac{1}{g_{m}}\approx\frac{1}{g_{m}} ix=vx/ro+gmv1v1=vx}req=ixvx=rogm1gm1

  • 考虑体效应
image-20240505222131635

i x = v x r o + ( g m 2 + g m b 2 ) v x i_x=\frac{v_x}{r_o}+(g_{m2}+g_{mb2})v_x ix=rovx+(gm2+gmb2)vx

r e q = v x i x = r o ∥ 1 g m 2 + g m b 2 ≈ 1 g m 2 + g m b 2 = 1 ( 1 + η ) g m 2 r_{eq}=\frac{v_{x}}{i_{x}}=r_{o}\parallel\frac{1}{g_{m2}+g_{mb2}}\approx\frac{1}{g_{m2}+g_{mb2}}=\frac{1}{(1+\eta)g_{m2}} req=ixvx=rogm2+gmb21gm2+gmb21=(1+η)gm21

  • 用小信号的方法计算增益
image-20240505222816333

A v = − g m 1 ⋅ ( r e q ∥ r o 1 ) ≈ − g m 1 ⋅ r e q A_v=-g_{m1}\cdot(r_{eq}\parallel r_{o1})\approx-g_{m1}\cdot r_{eq} Av=gm1(reqro1)gm1req

A v = − g m 1 g m 2 ⋅ 1 1 + η A_{v}=-\frac{g_{m1}}{g_{m2}}\cdot\frac{1}{1+\eta} Av=gm2gm11+η1

对于PMOS

image-20240505223238037

A v = − g m 1 g m 2 A v = − μ n ( W / L ) 1 μ p ( W / L ) 2 A_{v}=-\frac{g_{m1}}{g_{m2}}\\A_{v}=-\sqrt{\frac{\mu_{n}(W/L)_{1}}{\mu_{p}(W/L)_{2}}} Av=gm2gm1Av=μp(W/L)2μn(W/L)1

输入输出电阻
image-20240505223437810

r i n = ∞ r_{in}=\infty rin=

r o u t = r o 1 ∥ r o 2 ∥ 1 g m 2 ( 1 + η ) ≈ 1 g m 2 ( 1 + η ) \begin{aligned}r_{out}&=r_{o1}\parallel r_{o2}\parallel\frac{1}{g_{m2}(1+\eta)}\\&\approx\frac{1}{g_{m2}(1+\eta)}\end{aligned} rout=ro1ro2gm2(1+η)1gm2(1+η)1

image-20240505223446875

r i n = ∞ r_{in}=\infty rin=

r o u t = r o 1 ∥ r o 2 ∥ 1 g m 2 ≈ 1 g m 2 \begin{aligned}r_{out}&=r_{o1}\parallel r_{o2}\parallel\frac{1}{g_{m2}}\\&\approx\frac{1}{g_{m2}}\end{aligned} rout=ro1ro2gm21gm21

电流源负载

一般我们的电流源会用mos管实现,例如pmos

如下是pmos作电流源负载:

image-20240511213344161

M1小信号模型如下:

image-20240511214036993

所以总的小信号模型就是在 r o 1 r_{o1} ro1并上 r o 2 r_{o2} ro2
A v = − g m ⋅ ( r o 1 ∥ r o 2 ) r i n = ∞ r o u t = r o 1 ∥ r o 2 A_{v}=-g_{m}\cdot(r_{o1}\parallel r_{o2})\\r_{in}=\infty\quad r_{out}=r_{o1}\parallel r_{o2} Av=gm(ro1ro2)rin=rout=ro1ro2

电流源负载和电阻负载进行对比:

image-20240511213613958

所以电流源负载可实现小电流实现大增益。

通用的CS分析方法

image-20240511215013125

v i n → i d = g m v i n v → i → i d → v o u t = − i d r o u t i → v ν o u t v_{in}\xrightarrow{i_{d}=g_{m}v_{in}}_{v\to i}\to i_{d}\xrightarrow{v_{out}=-i_{d}r_{out}}_{i\to v}\nu_{out} vinid=gmvin viidvout=idrout ivνout

v o u t = − i d r o u t = − g m v i n r o u t A v = v o u t / v i n = − g m r o u t v_{out}=-i_{d}r_{out}=-g_{m}v_{in}r_{out}\\A_{v}=v_{out}/v_{in}=-g_{m}r_{out} vout=idrout=gmvinroutAv=vout/vin=gmrout

r o u t = r O ∥ r L o a d r_{out}=r_{O}\parallel r_{Load} rout=rOrLoad

image-20240511215323443

有源负载的共源极

image-20240511215411207
v o u t v i n = − ( g m l + g m 2 ) ( r o l ∥ r o 2 ) \frac{v_{\mathrm{out}}}{v_{\mathrm{in}}}=-(g_{\mathrm{ml}}+g_{\mathrm{m2}})(r_{\mathrm{ol}}\parallel r_{\mathrm{o2}}) vinvout=(gml+gm2)(rolro2)

带源极负反馈的共源级

image-20240511220028807

A s s u m i n g λ = γ = 0 Assuming \lambda=\gamma=0 Assumingλ=γ=0
I d = 1 2 μ n C o x W L ( V g s − V T H ) 2 = 1 2 μ n C o x W L ( V i n − R S I d − V T H ) 2 \begin{aligned} I_{d}& =\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}\big(V_{gs}-V_{TH}\big)^{2} \\ &=\frac12\mu_nC_{ox}\frac WL(V_{in}-R_SI_d-V_{TH})^2 \end{aligned} Id=21μnCoxLW(VgsVTH)2=21μnCoxLW(VinRSIdVTH)2
等效跨导如下:
G m = ∂ I d ∂ V i n G_m=\frac{\partial I_d}{\partial V_{in}} Gm=VinId

G m = ∂ I d ∂ V i n = μ n C o x W L ( V i n − R S I d − V T H ) ( 1 − R S G m ) G_{m}=\frac{\partial I_{d}}{\partial V_{in}}=\boxed{\mu_{n}C_{ox}\frac{W}{L}(V_{in}-R_{S}I_{d}-V_{TH})}(1-R_{S}G_{m}) Gm=VinId=μnCoxLW(VinRSIdVTH)(1RSGm)

框住的部分是 g m g_m gm
G m = g m ( 1 − R S G m ) ⟶ G m = g m 1 + g m R S G_{m}=g_{m}(1-R_{S}G_{m})\longrightarrow \quad G_{m}=\frac{g_{m}}{1+g_{m}R_{S}} Gm=gm(1RSGm)Gm=1+gmRSgm

A ν = − G m R D = − g m R D 1 + g m R S A_{\nu}=-G_{m}R_{D}=-\frac{g_{m}R_{D}}{1+g_{m}R_{S}} Aν=GmRD=1+gmRSgmRD

I f R s is large enough  → G m ≈ 1 / R s , A v = R D / R s \mathrm{If~}R_s\text{ is large enough }\to G_m{\approx}1/R_s,A_v{=}R_D/R_s If Rs is large enough Gm1/Rs,Av=RD/Rs

小信号分析

image-20240511220800843
v 1 = v i n − v x ν x = − v b s = R S i o u t v_{1}=v_{in}-v_{x}\quad\nu_{x}=-v_{bs}=R_{S}i_{out} v1=vinvxνx=vbs=RSiout

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/10445.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

01面向类的讲解

指针指向类成员使用 代码&#xff1a; #include<iostream> using namespace std;class Test { public:void func() { cout << "call Test::func" << endl; }static void static_func();int ma;static int mb; //不依赖对象 }; void Test::static…

JavaScript 动态网页实例 —— 事件处理应用

前言 事件处理的应用很广泛。在事件处理的应用中,鼠标事件的应用是最常用到的。本章给出几个鼠标事件处理应用的示例,包括:页面预览、图像切换、点亮文本、鼠标跟随、鼠标感应和禁用鼠标按键。在这些示例中,有的可以直接拿来应用,有的则只提供了一种应用的方法,稍加拓展,…

示例十一、声音传感器

通过以下几个示例来具体展开学习,了解声音传感器原理及特性&#xff0c;学习声音传感器的应用&#xff08;干货版&#xff09;&#xff1a; 示例十一、声音传感器 ino文件源码&#xff1a; //Arduino C demo void setup() {Serial.begin(9600);pinMode(5, OUTPUT); }void loo…

机器学习-无监督学习

无监督学习是机器学习和人工智能的另一个重要分支&#xff0c;它主要处理没有标签的数据集&#xff0c;目的是发现数据中的隐藏模式、结构或异常。无监督学习不依赖于预先定义的输出&#xff0c;而是让算法自己揭示数据的本质特征。 无监督学习的过程通常包括以下几个步骤&…

标准服务器控件

文本类型控件 通常指的是用于输入或显示文本的控件。 TextBox&#xff1a;这是最基本的文本输入控件。它允许用户在页面上输入文本。你可以设置它的属性来控制其行为&#xff0c;如MaxLength&#xff08;限制输入的最大字符数&#xff09;、ReadOnly&#xff08;是否只读&…

【C/C++笔试练习】DNS设置文件、应用层、Dos攻击、DNS服务、DNS、子网划分、http状态、路由设置、TCP连接、HTTP状态码、剪花布条、客似云来

文章目录 C/C笔试练习选择部分&#xff08;1&#xff09;DNS设置文件&#xff08;2&#xff09;应用层&#xff08;3&#xff09;Dos攻击&#xff08;4&#xff09;DNS服务&#xff08;5&#xff09;DNS&#xff08;6&#xff09;子网划分&#xff08;7&#xff09;http状态&am…

docker01-简介和概述

什么是docker&#xff1f; 我们现在开发项目是在windows操作系统使用idea开发&#xff0c;本地windows操作系统上有我们项目所需的jdk&#xff0c;mysql&#xff0c;redis&#xff0c;tomcat等环境&#xff0c;如果我们想打包我们的项目到一个别的服务器上&#xff0c;在别的服…

【Apache POI】Apache POI-操作Excel表格-简易版

Catalog Apache POI-操作Excel表格1. 需求2. 优点3. 缺点4. 应用场景5. 使用方法6. SpringBoot工程中处理Excel表格7. Demo示例 Apache POI-操作Excel表格 1. 需求 大多数项目的在运营过程中&#xff0c;会产生运营数据&#xff0c;如外卖系统中需要统计每日的订单完成数、每…

SpringBoot实现图片验证码

引入依赖 <dependency><groupId>com.github.whvcse</groupId><artifactId>easy-captcha</artifactId><version>1.6.2</version> </dependency>代码实现 package com.qiangesoft.captcha.controller;import com.wf.captcha.*…

最少数量线段覆盖-华为OD

系列文章目录 文章目录 系列文章目录前言一、题目描述二、输入描述三、输出描述四、java代码五、测试用例 前言 本人最近再练习算法&#xff0c;所以会发布一些解题思路&#xff0c;希望大家多指教 一、题目描述 给定坐标轴上的一组线段&#xff0c;线段的起点和终点均为整数…

C++:类与对象—继承

类与对象—继承 一、继承是什么&#xff1f;二、继承定义三、基类和派生类对象赋值转换四、继承中的作用域五、派生类的默认成员函数六、继承与友元七、继承与静态成员八、复杂的菱形继承及菱形虚拟继承九、继承的总结和反思十、考察重点 一、继承是什么&#xff1f; 继承(inh…

知识付费系统需要哪些资质要求,教育机构教务工作计划内容有哪些?

每个培训教育机构都是由很多人员组成&#xff0c;作为教育机构&#xff0c;老师不必须&#xff0c;是必不可少的&#xff0c;但是除了老师之外还得配备一定数量的销售人员和教务工作者&#xff0c;教务老师其实也就是搞后勤的&#xff0c;但是是必须的&#xff0c;那么教育机构…

Java的时间类

1. 日期类 1.1 第一代日期类 1) Date: 精确到毫秒&#xff0c;代表特定的瞬间 2) SimpleDateFormat: 格式和解析日期的类 SimpleDateFormat 格式化和解析日期的具体类。它允许进行格式化(日期-→>文本)、解析(文本->日期)和规范化. import java.text.ParseExce…

Java基础(27)Web应用中web.xml文件中可以配置哪些内容

在Java Web应用中&#xff0c;web.xml文件&#xff08;也被称为部署描述符&#xff09;是一个核心的配置文件&#xff0c;它位于应用的WEB-INF目录下。web.xml文件中可以配置多种不同的组件和参数&#xff0c;它们用来定义和调整应用的行为。以下是一些web.xml中可以配置的内容…

Web3 Tools - 助记词生成(完整代码)

工具介绍 Web3Tools - 助记词生成 完整代码 代码路径 import React, { useState } from react; import Grid from mui/material/Grid; import Paper from mui/material/Paper; import Typography from mui/material/Typography; import Button from mui/material/Button; i…

接口自动化测试很难掌握吗?

一. 什么是接口测试 接口测试是一种软件测试方法&#xff0c;用于验证不同软件组件之间的通信接口是否按预期工作。在接口测试中&#xff0c;测试人员会发送请求并检查接收到的响应&#xff0c;以确保接口在不同场景下都能正常工作。 就工具而言&#xff0c;常见的测试工具有…

AI+招聘:ATS招聘系统让HR简历筛选精准度达95%!

一提起招聘过程&#xff0c;许多HR就会想到那堆叠如山的简历、让人眼花缭乱的招聘网站以及琐碎繁复的手动数据录入。据统计&#xff0c;平均每位HR每年要处理数百甚至上千份简历&#xff0c;耗费大量精力在初级筛选和跟进上。   市场调查机构近日发布的一份报告显示&#xff…

【深度学习】YOLO源码中的mAP计算代码的理解笔记(大部分代码逐行+基础解释)

提示&#xff1a;本篇博客是在阅读了YOLO源码中的mAP计算方法的代码后加上官方解释以及自己的debug调试理解每一步是怎么操作的。由于是大部分代码进行了逐行解释&#xff0c;所以篇幅过长。 文章目录 前言一、输入格式处理1.1 转换公式二、init&#xff1a;初始化2.1 iouv2.2 …

AND Sorting题解

AND Sorting题解 AND Sorting 详细 题解()题目原意解题思路这是代码🐬ZZZB. AND Sorting(我也是有底线的)AND Sorting 详细 题解() 洛谷 原题,CF 原题 洛谷 AC记录,CF AC记录 题目原意 给你一个由从 0 0 0 到 n − 1 n-1 n−1 的整数组成的排列 p p p (每个整数都…

如何在没有头文件的情况下调用动态库的类的私有成员函数

如何在没有头文件的情况下调用动态库的类成员函数 编写一个不存在虚函数的类测试代码 _ZN6CClass4showEv如何获取调用 源代码 https://github.com/TonyBeen/study/tree/master/dlopen 编写一个不存在虚函数的类 // class.h #pragma onceclass CClass { public:CClass();~CCla…