代码随想录算法训练营第二十一天:树树树

代码随想录算法训练营第二十一天:树树树

513.找树左下角的值

力扣题目链接​**(打开新窗口)**

给定一个二叉树,在树的最后一行找到最左边的值。

示例 1:

513.找树左下角的值

示例 2:

513.找树左下角的值1

#算法公开课

《代码随想录》算法视频公开课 ****(打开新窗口)****​ 怎么找二叉树的左下角? 递归中又带回溯了,怎么办?|LeetCode:513.找二叉树左下角的值 ****(打开新窗口)****​ ,相信结合视频在看本篇题解,更有助于大家对本题的理解

#思路

本题要找出树的最后一行的最左边的值。此时大家应该想起用层序遍历是非常简单的了,反而用递归的话会比较难一点。

我们依然还是先介绍递归法。

#递归

咋眼一看,这道题目用递归的话就就一直向左遍历,最后一个就是答案呗?

没有这么简单,一直向左遍历到最后一个,它未必是最后一行啊。

我们来分析一下题目:在树的最后一行找到最左边的值

首先要是最后一行,然后是最左边的值。

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

如果对二叉树深度和高度还有点疑惑的话,请看:110.平衡二叉树 ​**(opens new window)** 。

所以要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

  1. 确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

代码如下:

int maxDepth = INT_MIN;   // 全局变量 记录最大深度
int result;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)
  1. 确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {
if (depth > maxDepth) {
maxDepth = depth;           // 更新最大深度
result = root->val;   // 最大深度最左面的数值
}
return;
}
  1. 确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    // 中
if (root->left) {   // 左
depth++; // 深度加一
traversal(root->left, depth);
depth--; // 回溯,深度减一
}
if (root->right) { // 右
depth++; // 深度加一
traversal(root->right, depth);
depth--; // 回溯,深度减一
}
return;

完整代码如下:

class Solution {
public:
int maxDepth = INT_MIN;
int result;
void traversal(TreeNode* root, int depth) {
if (root->left == NULL && root->right == NULL) {
if (depth > maxDepth) {
maxDepth = depth;
result = root->val;
}
return;
}
if (root->left) {
depth++;
traversal(root->left, depth);
depth--; // 回溯
}
if (root->right) {
depth++;
traversal(root->right, depth);
depth--; // 回溯
}
return;
}
int findBottomLeftValue(TreeNode* root) {
traversal(root, 0);
return result;
}
};

当然回溯的地方可以精简,精简代码如下:

class Solution {
public:
int maxDepth = INT_MIN;
int result;
void traversal(TreeNode* root, int depth) {
if (root->left == NULL && root->right == NULL) {
if (depth > maxDepth) {
maxDepth = depth;
result = root->val;
}
return;
}
if (root->left) {
traversal(root->left, depth + 1); // 隐藏着回溯
}
if (root->right) {
traversal(root->right, depth + 1); // 隐藏着回溯
}
return;
}
int findBottomLeftValue(TreeNode* root) {
traversal(root, 0);
return result;
}
};

如果对回溯部分精简的代码 不理解的话,可以看这篇257. 二叉树的所有路径(opens new window)

#迭代法

本题使用层序遍历再合适不过了,比递归要好理解得多!

只需要记录最后一行第一个节点的数值就可以了。

如果对层序遍历不了解,看这篇二叉树:层序遍历登场! ​**(opens new window)** ,这篇里也给出了层序遍历的模板,稍作修改就一过刷了这道题了。

代码如下:

class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
int result = 0;
while (!que.empty()) {
int size = que.size();
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (i == 0) result = node->val; // 记录最后一行第一个元素
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return result;
}
};

112. 路径总和

力扣题目链接(opens new window)

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 拿不准的遍历顺序,搞不清的回溯过程,我太难了! | LeetCode:112. 路径总和 ****(opens new window)****​ ,相信结合视频在看本篇题解,更有助于大家对本题的理解

#思路

相信很多同学都会疑惑,递归函数什么时候要有返回值,什么时候没有返回值,特别是有的时候递归函数返回类型为bool类型。

那么接下来我通过详细讲解如下两道题,来回答这个问题:

  • 112.路径总和(opens new window)
  • 113.路径总和ii(opens new window)

这道题我们要遍历从根节点到叶子节点的路径看看总和是不是目标和。

#递归

可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树

  1. 确定递归函数的参数和返回类型

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 ​**(opens new window)** 中介绍)
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型
  1. 确定终止条件

首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
  1. 确定单层递归的逻辑

因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (cur->left) { // 左 (空节点不遍历)
// 遇到叶子节点返回true,则直接返回true
if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
// 遇到叶子节点返回true,则直接返回true
if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。

回溯隐藏在traversal(cur->left, count - cur->left->val)​这里, 因为把count - cur->left->val​ 直接作为参数传进去,函数结束,count的数值没有改变。

为了把回溯的过程体现出来,可以改为如下代码:

if (cur->left) { // 左
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
count -= cur->right->val;
if (traversal(cur->right, count)) return true;
count += cur->right->val;
}
return false;

整体代码如下:

class Solution {
private:
bool traversal(TreeNode* cur, int count) {
if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回if (cur->left) { // 左
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
count -= cur->right->val; // 递归,处理节点;
if (traversal(cur->right, count)) return true;
count += cur->right->val; // 回溯,撤销处理结果
}
return false;
}public:
bool hasPathSum(TreeNode* root, int sum) {
if (root == NULL) return false;
return traversal(root, sum - root->val);
}
};

以上代码精简之后如下:

class Solution {
public:
bool hasPathSum(TreeNode* root, int sum) {
if (!root) return false;
if (!root->left && !root->right && sum == root->val) {
return true;
}
return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
}
};

是不是发现精简之后的代码,已经完全看不出分析的过程了,所以我们要把题目分析清楚之后,再追求代码精简。 这一点我已经强调很多次了!

#迭代

如果使用栈模拟递归的话,那么如果做回溯呢?

此时栈里一个元素不仅要记录该节点指针,还要记录从头结点到该节点的路径数值总和。

c++就我们用pair结构来存放这个栈里的元素。

定义为:pair<TreeNode*, int>​ pair<节点指针,路径数值>

这个为栈里的一个元素。

如下代码是使用栈模拟的前序遍历,如下:(详细注释)

class solution {public:
bool haspathsum(TreeNode* root, int sum) {
if (root == null) return false;
// 此时栈里要放的是pair<节点指针,路径数值>
stack<pair<TreeNode*, int>> st;
st.push(pair<TreeNode*, int>(root, root->val));
while (!st.empty()) {
pair<TreeNode*, int> node = st.top();
st.pop();
// 如果该节点是叶子节点了,同时该节点的路径数值等于sum,那么就返回true
if (!node.first->left && !node.first->right && sum == node.second) return true;// 右节点,压进去一个节点的时候,将该节点的路径数值也记录下来
if (node.first->right) {
st.push(pair<TreeNode*, int>(node.first->right, node.second + node.first->right->val));
}// 左节点,压进去一个节点的时候,将该节点的路径数值也记录下来
if (node.first->left) {
st.push(pair<TreeNode*, int>(node.first->left, node.second + node.first->left->val));
}
}
return false;
}
};

如果大家完全理解了本题的递归方法之后,就可以顺便把leetcode上113. 路径总和ii做了。

#相关题目推荐

#113. 路径总和ii

力扣题目链接(opens new window)

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,

113.路径总和ii1.png

#思路

113.路径总和ii要遍历整个树,找到所有路径,所以递归函数不要返回值!

如图:

113.路径总和ii

为了尽可能的把细节体现出来,我写出如下代码(这份代码并不简洁,但是逻辑非常清晰

class solution {
private:
vector<vector<int>> result;
vector<int> path;
// 递归函数不需要返回值,因为我们要遍历整个树
void traversal(TreeNode* cur, int count) {
if (!cur->left && !cur->right && count == 0) { // 遇到了叶子节点且找到了和为sum的路径
result.push_back(path);
return;
}if (!cur->left && !cur->right) return ; // 遇到叶子节点而没有找到合适的边,直接返回if (cur->left) { // 左 (空节点不遍历)
path.push_back(cur->left->val);
count -= cur->left->val;
traversal(cur->left, count);    // 递归
count += cur->left->val;        // 回溯
path.pop_back();                // 回溯
}
if (cur->right) { // 右 (空节点不遍历)
path.push_back(cur->right->val);
count -= cur->right->val;
traversal(cur->right, count);   // 递归
count += cur->right->val;       // 回溯
path.pop_back();                // 回溯
}
return ;
}public:
vector<vector<int>> pathSum(TreeNode* root, int sum) {
result.clear();
path.clear();
if (root == NULL) return result;
path.push_back(root->val); // 把根节点放进路径
traversal(root, sum - root->val);
return result;
}
};

至于113. 路径总和ii 的迭代法我并没有写,用迭代方式记录所有路径比较麻烦,也没有必要,如果大家感兴趣的话,可以再深入研究研究。

#总结

本篇通过leetcode上112. 路径总和 和 113. 路径总和ii 详细的讲解了 递归函数什么时候需要返回值,什么不需要返回值。

这两道题目是掌握这一知识点非常好的题目,大家看完本篇文章再去做题,就会感受到搜索整棵树和搜索某一路径的差别。

对于112. 路径总和,我依然给出了递归法和迭代法,这种题目其实用迭代法会复杂一些,能掌握递归方式就够了!

递归是「隐式」回溯:使用一个整型变量(比如pathSum)来累加路径上的节点值,则在递归的过程中就不需要显式地进行撤回操作了。这是因为每次递归调用时,pathSum的值是通过参数传递的,每一层的递归调用都有自己的pathSum副本,这些副本互不影响。

这里用列表回溯「显式地进行撤回」,仅供理解`

class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {// (显式)回溯List<Integer> path = new ArrayList<>();return hasPathSum(root, targetSum, path);
}private boolean hasPathSum(TreeNode root, int targetSum, List<Integer> path) {if (root == null) {return false;}// 将当前节点加入路径path.add(root.val);// 如果到达叶子节点且路径和等于目标值,则打印路径并返回trueif (root.left == null && root.right == null && targetSum == root.val) {System.out.println(path); // 打印路径return true; // 找到满足条件的路径,立即返回true}// 递归探索左右子树boolean hasPath = hasPathSum(root.left, targetSum - root.val, path) ||hasPathSum(root.right, targetSum - root.val, path);// **撤回。从路径中移除当前节点path.remove(path.size() - 1);return hasPath;
}

106.从中序与后序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

  • 中序遍历 inorder = [9,3,15,20,7]
  • 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

106. 从中序与后序遍历序列构造二叉树1

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 坑很多!来看看你掉过几次坑 | LeetCode:106.从中序与后序遍历序列构造二叉树 ****(opens new window)****​ ,相信结合视频在看本篇题解,更有助于大家对本题的理解

#思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。
  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
  • 第五步:切割后序数组,切成后序左数组和后序右数组
  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {// 第一步
if (postorder.size() == 0) return NULL;// 第二步:后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);// 叶子节点
if (postorder.size() == 1) return root;// 第三步:找切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}// 第四步:切割中序数组,得到 中序左数组和中序右数组
// 第五步:切割后序数组,得到 后序左数组和后序右数组// 第六步
root->left = traversal(中序左数组, 后序左数组);
root->right = traversal(中序右数组, 后序右数组);return root;
}

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!

我在数组:每次遇到二分法,都是一看就会,一写就废 ​**(opens new window)** 和数组:这个循环可以转懵很多人! ​**(opens new window)** 中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

完整代码如下:

class Solution {
private:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);// 叶子节点
if (postorder.size() == 1) return root;// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}// 切割中序数组
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素
postorder.resize(postorder.size() - 1);// 切割后序数组
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
// [0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};

相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。

加了日志的代码如下:(加了日志的代码不要在leetcode上提交,容易超时)

class Solution {
private:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
if (postorder.size() == 0) return NULL;int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);if (postorder.size() == 1) return root;int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );postorder.resize(postorder.size() - 1);vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());// 以下为日志
cout << "----------" << endl;cout << "leftInorder :";
for (int i : leftInorder) {
cout << i << " ";
}
cout << endl;cout << "rightInorder :";
for (int i : rightInorder) {
cout << i << " ";
}
cout << endl;cout << "leftPostorder :";
for (int i : leftPostorder) {
cout << i << " ";
}
cout << endl;
cout << "rightPostorder :";
for (int i : rightPostorder) {
cout << i << " ";
}
cout << endl;root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:
// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;// 切割后序数组
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
int leftPostorderBegin =  postorderBegin;
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
// 左闭右开的原则
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};

那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(该版本不要在leetcode上提交,容易超时

class Solution {
private:
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;// 切割后序数组
// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
int leftPostorderBegin =  postorderBegin;
int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了cout << "----------" << endl;
cout << "leftInorder :";
for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;cout << "rightInorder :";
for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;cout << "leftpostorder :";
for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {
cout << postorder[i] << " ";
}
cout << endl;cout << "rightpostorder :";
for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {
cout << postorder[i] << " ";
}
cout << endl;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;
}
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};

#相关题目推荐

#105.从前序与中序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:

105. 从前序与中序遍历序列构造二叉树

#思路

本题和106是一样的道理。

我就直接给出代码了。

带日志的版本C++代码如下: (带日志的版本仅用于调试,不要在leetcode上提交,会超时

class Solution {
private:
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;// 切割前序数组
// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
int leftPreorderBegin =  preorderBegin + 1;
int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
int rightPreorderEnd = preorderEnd;cout << "----------" << endl;
cout << "leftInorder :";
for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;cout << "rightInorder :";
for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
cout << inorder[i] << " ";
}
cout << endl;cout << "leftPreorder :";
for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {
cout << preorder[i] << " ";
}
cout << endl;cout << "rightPreorder :";
for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {
cout << preorder[i] << " ";
}
cout << endl;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;
}public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (inorder.size() == 0 || preorder.size() == 0) return NULL;
return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};

105.从前序与中序遍历序列构造二叉树,最后版本,C++代码:

class Solution {
private:
TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
int leftInorderBegin = inorderBegin;
int leftInorderEnd = delimiterIndex;
// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
int rightInorderBegin = delimiterIndex + 1;
int rightInorderEnd = inorderEnd;// 切割前序数组
// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
int leftPreorderBegin =  preorderBegin + 1;
int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
int rightPreorderEnd = preorderEnd;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;
}public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (inorder.size() == 0 || preorder.size() == 0) return NULL;// 参数坚持左闭右开的原则
return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
}
};

#思考题

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树! ,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

106.从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

#总结

之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。

所以要避免眼高手低,踏实地把代码写出来。

我同时给出了添加日志的代码版本,因为这种题目是不太容易写出来调一调就能过的,所以一定要把流程日志打出来,看看符不符合自己的思路。

大家遇到这种题目的时候,也要学会打日志来调试(如何打日志有时候也是个技术活),不要脑动模拟,脑动模拟很容易越想越乱。

最后我还给出了为什么前序和中序可以唯一确定一棵二叉树,后序和中序可以唯一确定一棵二叉树,而前序和后序却不行。

认真研究完本篇,相信大家对二叉树的构造会清晰很多

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/8784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

领域驱动设计架构演进

领域驱动设计由于其强调对领域的深入理解和关注业务价值,其架构演进依赖于领域的变化和特定领域中的技术实践。 初始阶段 一个单体架构,所有的功能都集成在一个应用程序中,领域模型可能还不完全清晰,甚至并未形成。这个阶段主要是为了验证产品的可行性,快速迭代并尽快推…

OpenCV单窗口并排显示多张图片

OpenCV单窗口并排显示多张图片 效果代码 PS&#xff1a;本例的代码适合图片的宽度和高度都相同。 效果 原始三张图片&#xff1a; 合并显示&#xff1a; 代码 import cv2 import numpy as npdef opencv_multi_img():# 读取图片img1 cv2.imread(saw_1.jpeg)img2 cv2.im…

【爬虫】爬取A股数据写入数据库(二)

前几天有写过一篇 【爬虫】爬取A股数据写入数据库&#xff08;一&#xff09;&#xff0c;现在继续完善下&#xff0c;将已有数据通过ORM形式批量写入数据库。 2024/05&#xff0c;本文主要内容如下&#xff1a; 对东方财富官网进行分析&#xff0c;并作数据爬取&#xff0c;使…

【高阶数据结构(二)】初识图论

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:高阶数据结构专栏⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多Go语言知识   &#x1f51d;&#x1f51d; 高阶数据结构 1. 前言2. 图的基…

LED显示屏控制器5个问题和解答

在LED电子显示屏的使用和维护过程中&#xff0c;用户经常会遇到各种技术问题。以下是五个关于LED电子显示屏控制器的常见问题及其解答&#xff0c;由专业LED显示屏生产厂家提供&#xff0c;旨在帮助用户更好地理解和使用LED显示屏。 1. 嵌入式实时脱机二合一控制器的工作原理 嵌…

SpringCloud Alibaba Sentinel 修改Dashboard用户名和密码

目录 一、下载Sentinel的Jar包 二、在启动时修改用户名和密码的命令 三、测试登录成功 在网上找到了一大堆文章&#xff0c;没一个有用的&#xff0c;最终还是通过不断测试找到了这个方法。 一、下载Sentinel的Jar包 Releases alibaba/Sentinel GitHub 二、在启动时修改…

并发问题系统学习(更新中)

进程、线程 进程&#xff1a;进程是代码在数据集合上的一次运行活动&#xff0c;是系统进行资源分配和调度的基本单位。可以理解为一个java应用。 线程&#xff1a;线程是进程的一个执行路径&#xff0c;一个进程中至少有一个线程&#xff0c;进程中的多个线程共享进程的资源。…

C++笔试强训day15

目录 1.平方数 2.分组 Check函数的具体实现&#xff1a; 3.拓扑排序 1.平方数 链接 数学找规律&#xff0c;找离 x 最近的完全平方数 y。 先开平方根再利用四舍五入进位即可。 详细代码&#xff1a; #include <cmath> #include <iostream> using namespac…

【吊打面试官系列】Java高并发篇 - 你对线程优先级的理解是什么?

大家好&#xff0c;我是锋哥。今天分享关于 【你对线程优先级的理解是什么&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; 你对线程优先级的理解是什么&#xff1f; 每一个线程都是有优先级的&#xff0c;一般来说&#xff0c;高优先级的线程在运行时会具有优先…

基于C语言中的类型转换,C++标准创造出了更加可视化的类型转换

目录 前言 一、 C语言中的类型转换 二、为什么C需要四种类型转换 三、C中新增的四种强制类型转换操作符以及它们的应用场景 1.static_cast 2.reinterpret_cast 3.const_cast 4.dynamic_cast 前言 在C语言中&#xff0c;如果赋值运算符左右两侧的类型不同&#xff0c;或者…

新书速览|图神经网络基础、模型与应用实战

掌握PyTorch图神经网络基础与模型&#xff0c;实战自然语言处理、计算机视觉、推荐系统、社交网络应用开发 01 本书内容 图神经网络不仅能够解决传统机器学习方法无法解决的图数据问题&#xff0c;而且能够应用于许多实际场景&#xff0c;例如社交网络、药物发现、网络安全、…

Yii2 自动生成php代码

文档地址&#xff1a;入门&#xff08;Getting Started&#xff09;: 用 Gii 生成代码&#xff08;Generating Code with Gii&#xff09; - Yii 2.0 权威指南 - 文档 - Yii Framework 中文网 找到配置文件&#xff0c;以我的项目为例&#xff1a; 因为的是开启了路由美化所以访…

【前端热门框架【vue框架】】——对组件进行更加简洁合理的处理和解释(一)

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;程序员-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

YOLOv5独家原创改进: 通用倒瓶颈(UIB)搜索块结合C3二次创新 | 轻量化之王MobileNetV4

💡💡💡创新点:轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞! 最主要创新:引入了通用倒瓶颈(UIB)搜索块,这是一个统一且灵活的结构,它融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分(ExtraDW)变体技…

Stable Diffusion WebUI 使用综述

前言 科技圈的风口年年都在变&#xff0c;前几年是区块链&#xff0c;后来是虚拟现实&#xff0c;元宇宙&#xff0c;web3&#xff0c;而现在是 AI&#xff0c;VR 曾经让我兴奋过&#xff0c;可惜它最终没能形成足够大的浪潮&#xff0c;离最终实现可能还很遥远。而 2022 年开…

flutter日期选择器仅选择年、月

引入包&#xff1a;flutter_datetime_picker: 1.5.0 封装 import package:flutter/cupertino.dart; import package:flutter/material.dart; import package:flutter_datetime_picker/flutter_datetime_picker.dart;class ATuiDateTimePicker {static Future<DateTime> …

TSINGSEE青犀视频边缘计算AI智能分析网关V4告警消息语音推送的配置流程

TSINGSEE青犀视频边缘计算硬件智能分析网关V4内置了近40种AI算法模型&#xff0c;支持对接入的视频图像进行人、车、物、行为等实时检测分析&#xff0c;上报识别结果&#xff0c;并能进行语音告警播放。今天我们来分享一下如何配置和使用AI智能分析网关V4的语音推送。 提前准备…

django中的cookie与session

获取cookie request.COOKIE.GET 使用cookie response.set-cookie views.py from django.http import HttpResponse from django.shortcuts import render# Create your views here. def cookie_test(request):r HttpResponse("hello world")r.set_cookie(lan, py…

c语言排序算法之八(桶排序)

前言 以下内容是被验证可以有效理解桶排序&#xff0c;代码也较容易理解。如果你发现还有很多需要增加的&#xff0c;欢迎留言。 为什么要单独写排序算法这一系列&#xff0c;看过一些贴子普遍篇幅较长。看完依旧难以直观理解原理及整个过程。代码永远是基于理解的基础上才能…

【刷题】前缀和进阶

送给大家一句话&#xff1a; 生活坏到一定程度就会好起来&#xff0c;因为它无法更坏。努力过后&#xff0c;才知道许多事情&#xff0c;坚持坚持&#xff0c;就过来了。 – 宫崎骏 《龙猫》 ┌(˘⌣˘)ʃ┌(˘⌣˘)ʃ┌(˘⌣˘)ʃ ┌(˘⌣˘)ʃ┌(˘⌣˘)ʃ┌(˘⌣˘)ʃ ┌(˘…