OpenCV 入门(一) —— OpenCV 基础

OpenCV 入门系列:

OpenCV 入门(一)—— OpenCV 基础
OpenCV 入门(二)—— 车牌定位
OpenCV 入门(三)—— 车牌筛选
OpenCV 入门(四)—— 车牌号识别
OpenCV 入门(五)—— 人脸识别模型训练与 Windows 下的人脸识别
OpenCV 入门(六)—— Android 下的人脸识别
OpenCV 入门(七)—— 身份证识别

1、OpenCV 简介

OpenCV(Open Source Computer Vision Library)是一个基于 BSD 许可开源发行的跨平台的计算机视觉库。可用于开发实时的图像处理、计算机视觉以及模式识别程序。由英特尔公司发起并参与开发,以 BSD 许可证授权发行,可以在商业和研究领域中免费使用。英特尔公司的 IPP 可以对 OpenCV 进行加速处理。

OpenCV 拥有 C++,Python 和 Java 接口,并且支持 Windows, Linux, Mac OS, iOS 和 Android 系统。OpenCV 实现了图像处理和计算机视觉方面的很多通用算法,它具有如下模块:

模块功能
Core核心基础模块,定义了被所有其他模块和基本数据结构(包括重要的多维数组 Mat)使用的基本函数、底层数据结构和算法函数
Imgproc图像处理模块,包括:滤波、高斯模糊、形态学处理、几何变换、颜色空间转换及直方图计算等
Highgui高层用户交互模块,包括:GUI、图像与视频 I/O 等
Video视频分析,运动分析及目标跟踪
Calib3d3D 模块,包括:摄像机标定、立体匹配、3D 重建等
Features2d二维特征检测与描述模块,包括:图像特征检测、描述、匹配等
Objdetect目标检测模块,如:人脸检测等
MI机器学习模块,包括:支持向量机、神经网络等
Flann最近邻开源库。包含一系列查找算法,自动选取最快算法的机制
Imgcodecs图像编解码模块,图像文件的读写操作
Photo图像计算(处理)模块,图像修复及去噪
Shape形状匹配算法模块。描述形状、比较形状
Stitching图像拼接
Superres超分辨率模块
Videoio视频读写模块,视频文件包括摄像头的输入
Videostab解决拍摄的视频稳定
Dnn深度神经网络
contrib可以引入额外模块

OpenCV 常用链接:

  • OpenCV 官网
  • OpenCV GitHub 主页
  • OpenCV 中国 Wiki 论坛

2、OpenCV 与人工智能

计算机内部都是 0101,它是如何像人类那样认识判定事务的。简单来讲是通过模式匹配定位关键点。比如找人的眼睛,它的二进制排列方式是与其他事务不同的,将这种近似于眼睛的排列方式进行匹配即可定位到人的眼睛。此外,OpenCV 还可以用于图像建模、人工智能。

人类对于事务的认识源于从小到大的耳濡目染,计算机也是一样的,需要通过大量样本与素材的学习与训练,后续碰到未知元素时,将其套入到已有的模型中,从而进行判断与认知,这就是学习的过程,人工智能的本质就是学习。

线性回归是人工智能的基础,也是 OpenCV 分类算法最重要的一个章节。通过一个例子解释,X1 表示业绩,X2 表示工作表现,二者被称为特征。Y 轴表示工资,也就是目标。很容易能得出 X 与 Y 的关系是:

  • 业绩越高、工作表现越好,工资越高(Y 随着 X1 和 X2 的升高而升高)
  • 业绩越低、工作表现越差,工资越低(Y 随着 X1 和 X2 的降低而降低)

图像的特征(Feature)是图像上最具代表性的一些点。所谓最具代表性,就是说这些点包含了图像表述的大部分信息。即使旋转、缩放,甚至调整图像亮度,这些点仍然稳定地存在,不会丢失。找出这些点,就相当于确定了这张图像,它们可以用于匹配、识别等有意义的工作。

通常来说,角点容易成为特征点。角点是指图案中处于角落的点,这些点附近像素值变化剧烈,因而容易被检测出。

通过众多样本数据可以拟合一个平面(所有点到平面距离的方差最短):

在这里插入图片描述

工资的发放情况会符合高斯分布:

2024-3-28.高斯分布示意图

人工智能的雏形就是高斯分布与拟合平面两个公式:

2024-3-28.高斯分布与拟合平面公式得到似然函数

2024-3-28.似然函数的最终解决目的

似然函数的数学模式是一个凹函数,从每个点找到最低点的过程就是学习的过程。

2024-3-28.机器学习之向量机

在机器学习中,支持向量机是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。假设我们要进行一个图像分类任务,当前有一系列标签:汽车、狗、猫、飞机……

一辆汽车的图像在计算机中可以表现为一个三维数组:

2024-3-28.汽车的图像在计算机中的表示

机器学习需要数据,让机器能够准确的识别一辆车,需要大概 5 万条数据。

识别一辆汽车,需先进行线性分类:

2024-3-28.OpenCV线性分类

将一个图像分成多个网格,每个网格有权重和评分,将所有网格的评分乘以权重后累加,哪个事务得分值越高,是该种事务的可能性就越大:

2024-3-28.OpenCV分区评分

学习率:

2024-3-28.学习率

3、OpenCV 的配置

本节会介绍 OpenCV 在不同 IDE 中的通用配置。虽然是以 Android 为主的文章,但是由于在 Windows 的 IDE 上通常可以更快的看到图像的处理效果(比如 Windows 启动摄像头只需要调用一个方法,但是 Android 就要用 Camera、Camera2 或者 CameraX 多写一些代码才可以,并且还需要经过打包 -> 编译 -> 安装这套流程才能验证代码效果),因此有时我们会将 OpenCV 处理图像的代码先在 Windows 上实现证明效果无误后,再移植到 Android 上。所以我们也会介绍在 Windows IDE 中如何配置与开发。

官网找到想要使用的版本,比如 4.1.0,下载 Windows 和 Android 两个版本的 SDK:

2024-3-28.OpenCV下载

3.1 Visual Studio 配置

我们首先打开 OpenCV Windows 的 exe 执行文件,它不会安装 OpenCV 的程序,而是将其解压到指定目录中。解压后的 build 目录下有多个目录,其中 include 头文件所在目录,lib 是库文件目录:

2024-5-2.OpenCV Windows版本目录

我们使用 Visual Studio 创建一个 CMake 项目,在次级的 CMakeLists.txt 中导入头文件和库文件目录,并让动态库文件 opencv_world410d.dll 链接到目标库中:

cmake_minimum_required (VERSION 3.8)# 导入头文件目录,注意路径用斜杠隔开而不是反斜杠
include_directories("G:/Tools/OpenCV/build/include")# 导入库文件目录
link_directories("G:/Tools/OpenCV/build/x64/vc15/lib")# 将源代码添加到此项目的可执行文件。
add_executable (CMakeProject1 "CMakeProject1.cpp" "CMakeProject1.h")# 将 lib 下的动态库文件 opencv_world410d 链接到目标库
target_link_libraries(CMakeProject1 opencv_world410d)

这里点击运行应该可以成功编译,并在项目的 /out/build/x64-Debug/CMakeProject1 目录下生成可执行文件:

2024-3-28.VS配置1

为了项目能正常使用 OpenCV 的函数,将动态库 opencv_world410d.dll 拷贝到该目录下(或者将该文件添加到环境变量中也可以),然后在源文件中开始使用 OpenCV 展示一张图片:

#include "CMakeProject1.h"
#include "opencv2/opencv.hpp"using namespace std;
using namespace cv;void test1() 
{// 读取一张图片Mat img = imread("C:/Users/69129/Desktop/bg.png");// 显示图片imshow("img", img);// 将图片进行灰度处理cvtColor(img, img, COLOR_BGR2GRAY);// 在 img2 窗口中显示灰度处理后的图片imshow("img2", img);// 等待键入,避免程序直接运行结束使得图片一闪而过waitKey();
}int main()
{test1();return 0;
}

也可以使用 OpenCV 驱动摄像头进行录制:

void test2()
{// 打开摄像头VideoCapture capture(0);if (!capture.isOpened()) {cout << "打开摄像头失败!" << endl;return;}Mat p;while (true){// 捕捉的图像传入矩阵 pcapture >> p;if (p.empty()) {cout << "读取摄像头数据失败!" << endl;return;}imshow("img", p);// ESC 退出if (waitKey(30) == 27) {break;}}
}int main()
{test2();return 0;
}

3.2 CLion 配置

CLion 的配置要比同样是 Windows 平台的 Visual Studio 要复杂一些。因为 OpenCV 官方提供的动态库是 Visual Studio 编译的版本,CLion 不能直接用,只能自己通过编译 OpenCV 的源码获取动态库。

编译 OpenCV 源码需要准备以下工具:

  1. 编译工具:MinGW 或者 TDM-GCC,安装后将 bin 目录添加到环境变量中(注意路径中不要有空格)
  2. 构建工具:CMake
  3. 源码:Windows 版本的 SDK 的 source 目录内是源码

在 CMake 安装目录的 bin 目录下找到 cmake-gui.exe 并打开:

2024-4-25.OpenCV源码编译1

打开后执行如下三步:

2024-4-24.CMake编译OpenCV1

点击 Configure 后要配置生成器:

2024-4-25.OpenCV源码编译3

一般情况下选择第一项,使用默认本地编译器即可。我们这里选择第二项手动指定,点击 Next 会让你指定 C 和 C++ 编译器:

2024-4-25.OpenCV源码编译4

我们这里使用 TDM-GCC,C 的编译器指定为 gcc,C++ 的编译器指定为 g++。点击 Finish 后开始配置,如果看到 Configuring done 字样表示配置成功。

在开始编译之前,先在 search 框内依次输入 test、java、python 并取消搜索结果中已经被勾选的项目:

2024-4-25.OpenCV源码编译5

因为我们使用的是 C++ 接口,用不到这些项目,取消勾选可以缩短编译时间。

生成成功会在 mingw_build 目录下生成如下文件:

2024-4-25.OpenCV源码编译6

在该目录中打开 cmd 执行编译命令:

# -j 表示启动几个线程进行编译
mingw32-make -j8

编译过程中可能会遇到如下错误:

  1. 编译 directx.cpp 时报错:

    modules\core\CMakeFiles\opencv_core.dir\build.make:417: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/src/directx.cpp.obj' failed
    mingw32-make[2]: *** [modules/core/CMakeFiles/opencv_core.dir/src/directx.cpp.obj] Error 1
    mingw32-make[2]: *** Waiting for unfinished jobs....
    CMakeFiles\Makefile2:1518: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/all' failed
    mingw32-make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2
    Makefile:164: recipe for target 'all' failed
    mingw32-make: *** [all] Error 2
    

    解决方法,在生成 CMake 文件之前,反选所有 OpenCL 相关选项重新生成:

    2024-4-25.OpenCV源码编译7

  2. 找不到 windres.exe 工具:

    [ 57%] Building RC object modules/core/CMakeFiles/opencv_core.dir/vs_version.rc.obj
    'D:\Program' 不是内部或外部命令,也不是可运行的程序
    或批处理文件。
    D:\Program Files\TDM-GCC-64\bin\windres.exe: preprocessing failed.
    modules\core\CMakeFiles\opencv_core.dir\build.make:1510: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/vs_version.rc.obj' failed
    mingw32-make[2]: *** [modules/core/CMakeFiles/opencv_core.dir/vs_version.rc.obj] Error 1
    mingw32-make[2]: *** Waiting for unfinished jobs....
    CMakeFiles\Makefile2:1518: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/all' failed
    mingw32-make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2
    Makefile:164: recipe for target 'all' failed
    mingw32-make: *** [all] Error 2
    

    这是由于我们配置的编译工具路径中有空格导致没有找到 windres.exe,需要将 TDM-GCC 安装到一个没有空格的路径中重新添加环境变量,重新在 CMake 中进行配置、生成、编译过程。这也是为什么我们前面提到编译工具安装路径不能有空格的原因

如果编译成功,再执行安装命令:

mingw32-make install

会在 mingw_build 目录下再生成一个 install 目录,内容如下:

2024-4-25.OpenCV源码编译8

最后在 CLion 的 CMakeLists.txt 文件中添加如下配置:

# 创建 OpenCV_DIR 变量
set(OpenCV_DIR G:/Tools/opencv410/mingw_build/install)# 查找并加载 OpenCV_DIR 地址下的 OpenCVConfig.cmake 文件
find_package(OpenCV REQUIRED)# 包含头文件目录
include_directories(${OpenCV_INCLUDE_DIRS})# 将库文件链接到项目中
target_link_libraries(OpenCV_CLion ${OpenCV_LIBS})

这个配置方式在 /mingw_build/install/OpenCVConfig.cmake 中有所介绍:

#  Usage from an external project:
#    In your CMakeLists.txt, add these lines:
#
#    FIND_PACKAGE(OpenCV REQUIRED)
#    TARGET_LINK_LIBRARIES(MY_TARGET_NAME ${OpenCV_LIBS})
#
#    Or you can search for specific OpenCV modules:
#
#    FIND_PACKAGE(OpenCV REQUIRED core imgcodecs)
#
#    If the module is found then OPENCV_<MODULE>_FOUND is set to TRUE.
#
#    This file will define the following variables:
#      - OpenCV_LIBS                     : The list of libraries to link against.
#      - OpenCV_INCLUDE_DIRS             : The OpenCV include directories.
#      - OpenCV_COMPUTE_CAPABILITIES     : The version of compute capability
#      - OpenCV_VERSION                  : The version of this OpenCV build: "4.1.0"
#      - OpenCV_VERSION_MAJOR            : Major version part of OpenCV_VERSION: "4"
#      - OpenCV_VERSION_MINOR            : Minor version part of OpenCV_VERSION: "1"
#      - OpenCV_VERSION_PATCH            : Patch version part of OpenCV_VERSION: "0"
#      - OpenCV_VERSION_STATUS           : Development status of this build: ""

FIND_PACKAGE() 指示要寻找 OpenCV,REQUIRED 用于确保在找不到指定的包时发生错误并停止构建过程。

包含头文件使用的 ${OpenCV_INCLUDE_DIRS} 和链接库文件时所使用的 ${OpenCV_LIBS} 都是这个 CMake 文件生成的变量,用 message 打印变量值可以发现:

-- G:/Tools/opencv410/mingw_build/install/include
-- opencv_calib3d;opencv_core;opencv_dnn;opencv_features2d;opencv_flann;opencv_gapi;opencv_highgui;opencv_imgcodecs;opencv_imgproc;opencv_ml;opencv_objdetect;opencv_photo;opencv_stitching;opencv_video;opencv_videoio

${OpenCV_INCLUDE_DIRS} 就是 install 目录下的 include 文件夹,${OpenCV_LIBS} 则是 install/x64/mingw/bin 目录下的动态库:

2024-4-25.OpenCV Windows版编译得到的动态库

当然一切的前提都是要指定 OpenCV 的路径,如果没有指定或者指定错误,会有相关的提示:

2024-4-25.OpenCV Windows编译指定路径

运行代码可能会发生崩溃,此时可以做如下尝试:

  1. 将前面编译 OpenCV 的编译工具,比如 TDM-GCC 添加到 Toolchains 中,并指定 Build Tool 为编译 OpenCV 时使用的 ming32-make:
    2024-4-25.CLion配置OpenCV0
  2. 点击 Edit Configurations:
    2024-4-25.CLion配置OpenCV1
    将编译 OpenCV 并安装后的 install 目录下的 bin 目录添加到 Environment variables 和 Working directory 中:
    2024-4-25.CLion配置OpenCV2

3.3 Android AS 配置

解压 OpenCV 的 Android SDK,在如图所示的目录中拿到动态库文件 libopencv_java4.so:

2024-3-28.OpenCV Android端配置

至于头文件,Android SDK 中并没有提供,因此我们要使用 Windows 版本提供的通用头文件:

2024-3-28.OpenCV通用头文件

在 AS 模块的 CMakeLists.txt 中引入头文件和库文件:

cmake_minimum_required(VERSION 3.22.1)project("opencv")# 导入头文件
include_directories(${CMAKE_SOURCE_DIR}/opencv/include)# 导入库文件
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -L${CMAKE_SOURCE_DIR}/libs/${CMAKE_ANDROID_ARCH_ABI}")add_library(opencvSHAREDnative-lib.cpp)target_link_libraries(opencvlogopencv_java4 # 链接 OpenCV 动态库android # 如果要在 Native 层通过 ANativeWindow 渲染,需要链接 libandroid
)

在模块的 build.gradle 中添加 CPU 架构类型的过滤:

android {...defaultConfig {...externalNativeBuild {cmake {abiFilters 'armeabi-v7a'}}ndk {abiFilters 'armeabi-v7a'}}sourceSets {main {jniLibs.srcDirs("src/main/cpp/opencv/libs")}}...
}

这里要特意说一下 sourceSets 的配置。由于 Android 项目的库文件通常位于 jniLibs 目录下,并且 Gradle 默认会将该目录下的库文件复制到 APK 中的正确位置。这种默认行为可以适用于大多数情况。但是现在我们将库文件放在了 /src/main/cpp/opencv/libs/ 目录下:

2024-3-29.OpenCV AS配置目录

此时需要显式地配置 Gradle 来处理库文件的复制和加载,就像上面那样在 sourceSets 中指定 jniLibs 的路径,以保证库可以被正确地复制到 APK 中并在运行时加载。否则在执行 System.loadLibrary() 去加载 Native 的动态库时,会抛出异常说找不到 OpenCV 的动态库 libopencv_java4.so:


此外,如果运行 Demo 时抛出异常:

FATAL EXCEPTION: main
java.lang.UnsatisfiedLinkError: dlopen failed: library "libc++_shared.so" not found

由于 libopencv_java.so 依赖 STL 标准库(比如 std、malloc() 等等),并且依赖的是标准库的动态库 libc++_shared.so。而 CMake 构建 C++ 运行时的默认值是 libc++_static.a,因此你需要在 build.gradle 中增加一个配置参数:

android {defaultConfig {externalNativeBuild {cmake {cppFlags ""abiFilters 'armeabi-v7a'// 指定 CMake 使用 c++ 标准动态库 libc++_shared.soarguments '-DANDROID_STL=c++_shared'}}}
}

当然,如果你的构建系统使用的是 clang,由于 clang 默认使用 c++_shared,也就不会出现上述问题:

2024-5-4.选择C++运行时

官方参考页面:C++库支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/8730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每日两题 / 23. 合并 K 个升序链表 94. 二叉树的中序遍历(LeetCode热题100)

23. 合并 K 个升序链表 - 力扣&#xff08;LeetCode&#xff09; 若lists有k个元素&#xff0c;调用k - 1次&#xff08;两个有序链表的合并&#xff09;即可 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNod…

探索鸿蒙开发:鸿蒙系统如何引领嵌入式技术革新

嵌入式技术已经成为现代社会不可或缺的一部分。而在这个领域&#xff0c;华为凭借其自主研发的鸿蒙操作系统&#xff0c;正悄然引领着一场技术革新的浪潮。本文将探讨鸿蒙开发的特点、优势以及其对嵌入式技术发展的深远影响。 鸿蒙操作系统的特点 鸿蒙&#xff0c;作为华为推…

一键接入电商API数据接口淘宝API通过商品ID、URL采集商品详情页实时数据API接入指南

一键接入电商API数据接口&#xff0c;尤其是淘宝API&#xff0c;通常需要遵循以下步骤&#xff1a; 注册账号&#xff1a;注册接入账号获取Api Key和Api Secret。 选择API&#xff1a;根据需要选择合适的API服务&#xff0c;如通过商品ID或URL采集商品详情页数据的API。 权限…

WPF鼠标拖拽的最佳实现

WPF鼠标拖拽的最佳实现 在很多项目中都会遇到鼠标拖拽控件移动的需求&#xff0c;常见的有从在列表中拖拽列表项移动&#xff0c;拖拽控件移动等。 本文将介绍2种拖拽的简单的实现 列表项的拖拽 本文将使用 gong-wpf-dragdrop 这个github上的库来实现列表的拖拽的效果&…

GitLab使用记录

GitLab 文章目录 1. 常用命令1.1 配置邮箱 用户名1.2 查看配置1.3 基本语法 2. 连接gitlab3. 直接拉去项目 1. 常用命令 1.1 配置邮箱 用户名 git config --global user.name ShangzheChen git config --global user.email 735511377qq.com1.2 查看配置 cat ~/.gitconfig这…

企业信使_登陆页

在当今数字化时代&#xff0c;企业与员工之间的沟通变得越来越重要。为了满足企业内部沟通的需求&#xff0c;一款功能强大而方便使用的企业信使_登陆页应运而生。企业信使_登陆页是一种专为企业内部使用而设计的通讯工具&#xff0c;可以帮助企业提高沟通效率&#xff0c;加强…

4.用python爬取保存在text中的格式为m3u8的视频

文章目录 一、爬取过程详解1.寻找视频的m3u8链接2.从网页源码中寻找视频的m3u8链接的第二部分内容3.从视频的m3u8链接获取视频 二、完整的代码 一、爬取过程详解 1.寻找视频的m3u8链接 这个文档承接了爬虫专栏的 第一节.python爬虫爬取视频网站的视频可下载的源url&#xff0…

车规级低功耗汽车用晶振SG-9101CGA

车规级晶振SG-9101CGA属于爱普生9101系列&#xff0c;是一款可编程晶振。SG-9101CGA车规级晶振采用2.5x2.0mm封装&#xff0c;利用PLL技术生产&#xff0c;此款振荡器的频率范围从0.67M~170MHZ任一频点可选&#xff0c;步进1ppm&#xff0c;采用标准CMOS输出&#xff0c;最大输…

为 Flutter 应用设置主题:ThemeData 和 ColorScheme 指南

在媒体和其他来源中有许多关于这个主题的文章&#xff0c;那么这篇文章的必要性是什么&#xff1f; 在本文中&#xff0c;我计划仅关注 ThemeData 小部件的关键点以及我的开发经验中最常用的参数&#xff0c;并且您将获得有关每个参数如何对您的应用程序执行操作的简要说明。 …

分类任务的基础学习

1.什么是分类&#xff1f; 2.局限性&#xff1a; 当样本量逐渐变大的时候&#xff0c;准确率会下降——>因为线性回归曲线距离我们的原点越远&#xff0c;预测就会开始不准确&#xff0c;因为 x前面的倍数就会越来越小&#xff0c;这就导致了样本量变大&#xff0c;但是那些…

Kafka 业务日志采集最佳实践

简介 Apache Kafka 是一个分布式流处理平台&#xff0c;主要用于构建实时数据流管道和应用程序。在收集业务日志的场景中&#xff0c;Kafka 可以作为一个消息中间件&#xff0c;用于接收、存储和转发大量的日志数据。将 Kafka 与其他系统&#xff08;如 Elasticsearch、Flume、…

docker-compose安装 人大金仓数据库

下载官网安装包 将安装包重命名为: kingbase.tar 再导入镜像仓库 docker load -i kingbase.tar目录创建data文件夹创建docker-compose文件 version: 3 services: kingbase: image: kingbase:v1 container_name: kingbaseports: - "54321:54321" volumes: -…

解决微信小程序电脑能正常使用,手机端无法正常访问的SSL证书问题

目录 前言1 问题描述与调试2 探索问题根源2.1 用户反馈收集2.2 尝试手机端访问2.3 PC端调试 3 确认问题与解决方案3.1 检查SSL证书3.2 重新部署SSL证书3.3 测试修复效果 4 SSL&#xff08;Secure Sockets Layer&#xff09;证书中间证书4.1 SSL证书链的构成4.2 中间证书的作用 …

【管理咨询宝藏97】智慧物流园区顶层设计方案

本报告首发于公号“管理咨询宝藏”&#xff0c;如需阅读完整版报告内容&#xff0c;请查阅公号“管理咨询宝藏”。 【管理咨询宝藏97】智慧物流园区顶层设计方案 【格式】PDF版本 【关键词】智慧园区、制造型企业转型、数字化转型 【核心观点】 - 中国物流业整体呈现集中度低…

springboot项目 字典/枚举翻译 终极解决方案 AOP+自定义注解+递归实体字段+实体动态三级缓存+责任链+多种转换方式

目录 前言实现思路技术确定 食用方式效果使用样例项目中使用第一步 复制包第二步 实现LoadDictDatabase并将其注入容器第三步 标识需要翻译的字段第四步 标识需要翻译的方法第五步 调用需要翻译的方法 实现细节TODO 前言 字典,即在存储介质中进行存储时,为了避免业务上对其名称…

数据结构复习指导之二叉树的概念

文章目录 二叉树 考纲内容 复习提示 1.二叉树的概念 1.1二叉树的定义及其主要特性 1.1.1二叉树的定义 1.1.2几种特殊的二叉树 1.1.3二叉树的性质 1.2二叉树的存储结构 1.2.1顺序存储结构 1.2.2链式存储结构 知识回顾 二叉树 考纲内容 &#xff08;一&#xff09;树…

苹果Mac用户下载VS Code(Universal、Intel Chip、Apple Silicon)哪个版本?

苹果macOS用户既可以下载通用版&#xff08;Universal&#xff09;&#xff0c;软件将自动检测用户的处理器并进行适配。 也可以根据型号下载对应CPU的版本&#xff1a; 使用Intel CPU的Mac电脑可下载Intel Chip版本&#xff1b; 使用苹果自研M系列CPU的Mac电脑下载Apple Si…

Context capture/Pix4Dmapper/AutoCAD/CASS/EPS软件的安装流程与使用方法;土方量计算;无人机摄影测量数据处理

目录 专题一 无人机摄影测量技术应用现状及其发展 专题二 基本原理和关键技术讲解 专题三 无人机影像外业数据获取 专题四 数据处理环境建立与软件熟悉 专题五 GNSS数据土方量计算 专题六 基于无人机影像数据的正射影像制作 专题七 基于无人机影像数据的三维模型制作 专…

gocator导出图片

想用3D扫描后的图片&#xff0c;但是系统自带的导出方法很麻烦&#xff0c;所以考虑通过sdk导出 首先需要设置点云亮度 这里是导出图片的关键代码 case GoDataMessageType.SurfaceIntensity: { Debug.WriteLine("SurfaceIntensity "); GoSu…

线段树专题

落谷1607 #include<bits/stdc.h> using namespace std;#define ls u<<1 #define rs u<<1|1const int N 1e5;int n, k, c, ans; struct line {int l, r, m; // m为候车的牛的数量bool operator<(line b) {return r < b.r;} }s[N];struct tree {int l, …