(图论)最短路问题合集(包含C,C++,Java,Python,Go)

不存在负权边:

1.朴素dijkstra算法

原题:

思路:(依然是贪心的思想)

1.初始化距离:dis[1]=0,dis[i]=INF(正无穷)

2.循环n次:

        找到当前不在s中的dis最小的点(s表示已经确定最短距离的点(可以开一个st数组表示))

        假设找到了t这个点,用这个点更新其他所有点的最短距离:

                if dis[x]>dis[t]+wi(这里wi表示边权)

实例演示:

代码如下:

一些注意细节(用//表示)

c++版本:

#include <iostream>
#include <cstring>using namespace std;
const int N=510;
int  q[N][N];
int dis[N];
int n,m;
bool st[N];
int dijkstra(){memset(dis,0x3f,sizeof dis);dis[1]=0;for(int i=0;i<n-1;i++){int t=-1;for(int j=1;j<=n;j++){if(!st[j]&&(t==-1||dis[t]>dis[j])){
//这里t==-1,其实代表是第一次进入,更新t的值,而后面才开始比较t=j;}}for(int j=1;j<=n;j++){dis[j]=min(dis[j],dis[t]+q[t][j]);}st[t]=1;}if(dis[n]==0x3f3f3f3f) return -1;return dis[n];
}int main(){cin>>n>>m;memset(q,0x3f,sizeof q);while(m--){int x,y,z;cin>>x>>y>>z;q[x][y]=min(q[x][y],z);}cout<<dijkstra()<<" ";return 0;
}

C:

#include <stdio.h>
#include <string.h>#define N 510int q[N][N];
int dis[N];
int n, m;
int st[N];int min(int a, int b) {return a < b ? a : b;
}int dijkstra() {memset(dis, 0x3f, sizeof(dis));dis[1] = 0;for (int i = 0; i < n - 1; i++) {int t = -1;for (int j = 1; j <= n; j++) {if (!st[j] && (t == -1 || dis[t] > dis[j])) {t = j;}}for (int j = 1; j <= n; j++) {dis[j] = min(dis[j], dis[t] + q[t][j]);}st[t] = 1;}if (dis[n] == 0x3f3f3f3f) return -1;return dis[n];
}int main() {scanf("%d %d", &n, &m);memset(q, 0x3f, sizeof(q));while (m--) {int x, y, z;scanf("%d %d %d", &x, &y, &z);q[x][y] = min(q[x][y], z);}printf("%d ", dijkstra());return 0;
}

 python:

import sys  N = 510  
q = [[float('inf')] * N for _ in range(N)]  # 初始化邻接矩阵  
dis = [float('inf')] * N  # 初始化距离数组  
st = [False] * N  # 初始化标记数组  n, m = map(int, input().split())  # 读取节点数和边数  # 读取边的信息  
for _ in range(m):  x, y, z = map(int, input().split())  q[x - 1][y - 1] = min(q[x - 1][y - 1], z)  # 注意索引从0开始  def dijkstra():  dis[0] = 0  # 起始节点距离设为0  for _ in range(n - 1):  t = -1  for j in range(n):  if not st[j] and (t == -1 or dis[j] < dis[t]):  t = j  for j in range(n):  if q[t][j] != float('inf'):  dis[j] = min(dis[j], dis[t] + q[t][j])  st[t] = True  if dis[n - 1] == float('inf'):  return -1  return dis[n - 1]  print(dijkstra())

 Go:

package main  import (  "bufio"  "fmt"  "math"  "os"  "strconv"  "strings"  
)  const N = 510  var (  q   [N][N]int  dis [N]int  n   int  m   int  st  = make([]bool, N)  
)  func min(a, b int) int {  if a < b {  return a  }  return b  
}  func dijkstra() int {  for i := range dis {  dis[i] = math.MaxInt32  }  dis[0] = 0 // 注意Go的数组索引从0开始  for i := 0; i < n; i++ {  t := -1  for j := 0; j < n; j++ {  if !st[j] && (t == -1 || dis[j] < dis[t]) {  t = j  }  }  for j := 0; j < n; j++ {  if q[t][j] != math.MaxInt32 {  dis[j] = min(dis[j], dis[t]+q[t][j])  }  }  st[t] = true  }  if dis[n-1] == math.MaxInt32 {  return -1 // 如果没有路径到达节点n-1  }  return dis[n-1]  
}  func main() {  scanner := bufio.NewScanner(os.Stdin)  fmt.Scanln(&n, &m)  for i := range q {  for j := range q[i] {  q[i][j] = math.MaxInt32  }  }  for m > 0 {  m--  scanner.Scan()  line := scanner.Text()  fields := strings.Fields(line)  x, _ := strconv.Atoi(fields[0])  y, _ := strconv.Atoi(fields[1])  z, _ := strconv.Atoi(fields[2])  x-- // 转换为Go的索引  y--  q[x][y] = min(q[x][y], z)  }  fmt.Println(dijkstra())  
}

这里储存方式用邻接矩阵,主要是因为用于稠密图。图中可能存在重边和自环,但所有边权均为正值。算法复杂度:\mathcal{O}(n^2)

2.堆优化的dijkstra

我们思考一下,上述步骤在哪里可以优化:找到当前不在s中的dis最小的点,我们可以用堆进行优化,优化后复杂度为:\mathcal{O}(mlogn),堆优化,手写堆和优先队列,但是其实在dijkstra中,不需要手写堆,两个复杂度差不多,不如用优先队列方便。并且,此时为稀疏图,用邻接表更好。

 我们用邻接表现在只需要遍历邻接表中头元素连接的,进行更改,每一次取出队列中的最小值即可

C++:

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 1e6 + 10;//注意开两倍大小
int h[N], w[N], e[N], ne[N], idx;
int n,m;
int dis[N];
bool st[N];
typedef pair<int,int> PII;
priority_queue<PII,vector<PII>,greater<PII>> p;
void add(int a, int b, int c)//模板,记下来就好了
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra(){memset(dis,0x3f,sizeof dis);dis[1]=0;p.push({0,1});while(p.size()){auto t=p.top();p.pop();int ver=t.second;if(st[ver]) continue;//判断是否之前更新过了st[ver]=1;for(int i=h[ver];i!=-1;i=ne[i]){int j=e[i];if(dis[j]>dis[ver]+w[i]){dis[j]=dis[ver]+w[i];p.push({dis[j],j});}}}if(dis[n]==0x3f3f3f3f) return -1;return dis[n];
}int main(){cin>>n>>m;memset(h, -1, sizeof h);//邻接表记得初始化头结点while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}cout<<dijkstra()<<" ";return 0;
}

python:

import heapqN = 1000010
h = [-1] * N
w = [0] * N
e = [0] * N
ne = [0] * N
idx = 0
n, m = map(int, input().split())
dis = [float('inf')] * N
st = [False] * N
p = []def add(a, b, c):global idxe[idx] = bw[idx] = cne[idx] = h[a]h[a] = idxidx += 1def dijkstra():global disdis[1] = 0heapq.heappush(p, (0, 1))while p:d, ver = heapq.heappop(p)if st[ver]:continuest[ver] = Truei = h[ver]while i != -1:j = e[i]if dis[j] > dis[ver] + w[i]:dis[j] = dis[ver] + w[i]heapq.heappush(p, (dis[j], j))i = ne[i]if dis[n] == float('inf'):return -1return dis[n]for _ in range(m):a, b, c = map(int, input().split())add(a, b, c)print(dijkstra())

如果存在负权边:

3.bellman-ford

对于边的存储方式不高。故可以用结构体初始化。

方式:初始化所有点到源点的距离为∞,把源点到自己的距离设置为0,遍历n次;每次遍历m条边,用每一条边去更新各点到源点的距离。在碰到限制了最短路径上边的长度时就只能用bellman_ford了。

for n次
for 所有边 a,b,w (松弛操作)
dis[b] = min(dis[b],back[a] + w)

//注意:这里的backup非常重要,为了防止串联:(假设限制只能用1条边)

如下图:如果出现这样,不用之前的备份,就会出现1->3最近为2,而不是3,所以要备份一下之前的情况,用之前未更新的情况更新下一个节点。

 

c++: 

#include<iostream>
#include <cstring>using namespace std;
const int N=510,M=10010;
struct edge{int a;int b;int w;
}edge[M];
int dis[N];
int backup[N];
int n,m,k;
void bellman_ford(){memset(dis,0x3f,sizeof dis);dis[1]=0;for(int i=0;i<k;i++){memcpy(backup,dis,sizeof dis);for(int j=0;j<m;j++){auto e=edge[j];dis[e.b]=min(dis[e.b],backup[e.a]+e.w);}}
}int main(){cin>>n>>m>>k;for(int i=0;i<m;i++){int x,y,z;cin>>x>>y>>z;edge[i]={x,y,z};
}bellman_ford();if(dis[n]>0x3f3f3f3f/2)  puts("impossible");//可能存在负权边else printf("%d\n", dis[n]);return 0;
}

c:

#include <stdio.h>
#include <string.h>#define N 510
#define M 10010struct Edge {int a;int b;int w;
};struct Edge edge[M];
int dis[N];
int backup[N];
int n, m, k;void bellman_ford() {memset(dis, 0x3f, sizeof dis);dis[1] = 0;for (int i = 0; i < k; i++) {memcpy(backup, dis, sizeof dis);for (int j = 0; j < m; j++) {struct Edge e = edge[j];if (backup[e.a] + e.w < dis[e.b]) {dis[e.b] = backup[e.a] + e.w;}}}
}int main() {scanf("%d %d %d", &n, &m, &k);for (int i = 0; i < m; i++) {int x, y, z;scanf("%d %d %d", &x, &y, &z);edge[i].a = x;edge[i].b = y;edge[i].w = z;}bellman_ford();if (dis[n] > 0x3f3f3f3f / 2) {printf("impossible\n");} else {printf("%d\n", dis[n]);}return 0;
}

python:

N = 510
M = 10010class Edge:def __init__(self, a, b, w):self.a = aself.b = bself.w = wedge = [Edge(0, 0, 0) for _ in range(M)]
dis = [float('inf')] * N
backup = [0] * Ndef bellman_ford():global disdis[1] = 0for _ in range(k):backup[:] = dis[:]for j in range(m):e = edge[j]dis[e.b] = min(dis[e.b], backup[e.a] + e.w)def main():global n, m, kn, m, k = map(int, input().split())for i in range(m):x, y, z = map(int, input().split())edge[i] = Edge(x, y, z)bellman_ford()if dis[n] > 0x3f3f3f3f // 2:print("impossible")else:print(dis[n])if __name__ == "__main__":main()

 Go:

package mainimport ("fmt"
)const N = 510
const M = 10010type Edge struct {a, b, w int
}var edge [M]Edge
var dis [N]int
var backup [N]int
var n, m, k intfunc bellmanFord() {for i := range dis {dis[i] = 0x3f3f3f3f}dis[1] = 0for i := 0; i < k; i++ {copy(backup[:], dis[:])for j := 0; j < m; j++ {e := edge[j]if dis[e.b] > backup[e.a]+e.w {dis[e.b] = backup[e.a] + e.w}}}
}func main() {fmt.Scan(&n, &m, &k)for i := 0; i < m; i++ {var x, y, z intfmt.Scan(&x, &y, &z)edge[i] = Edge{x, y, z}}bellmanFord()if dis[n] > 0x3f3f3f3f/2 {fmt.Println("impossible")} else {fmt.Println(dis[n])}
}

 时间复杂度:\mathcal{O}(mn)

4.spfa

对bellman-ford的优化,不一定每条边都会更新(spfa算法的想法基础)。

dis[b] = min(dis[b],back[a] + w)

观察这个式子,只有back[a]变小了,我的后继dis[b]才会变小

所以,我可以用一个队列,在一次变化中,只要有节点变小了,那么就肯定会影响后继节点,就放入队列之中。只要队列不空,就一直类似于bfs一样进行。

 时间复杂度:一般\mathcal{O}(m),最坏\mathcal{O}(mn)

//与dijkstra非常相似
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>using namespace std;const int N = 100010;int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dis[N];
bool st[N];
queue<int> q;
void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}int spfa(){memset(dis,0x3f,sizeof dis);dis[1]=0;q.push(1);st[1]=1;while(q.size()){auto t=q.front();q.pop();st[t]=0;for(int i=h[t];i!=-1;i=ne[i]){int j=e[i];if(dis[j]>dis[t]+w[i]){dis[j]=dis[t]+w[i];if(!st[j]){q.push(j);st[j]=1;}}}}
return dis[n];
}
int main()
{scanf("%d%d", &n, &m);memset(h, -1, sizeof h);while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}int t = spfa();if (t == 0x3f3f3f3f) puts("impossible");else printf("%d\n", t);return 0;
}

 c:

#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  
#include <stdbool.h>  #define N 100010  
#define INF 0x3f3f3f3f  int n, m;  
int h[N], w[N], e[N], ne[N], idx;  
int dis[N];  
bool st[N];  typedef struct {  int data;  
} QueueNode;  typedef struct {  QueueNode q[N];  int front, rear;  
} Queue;  void initQueue(Queue *q) {  q->front = q->rear = 0;  
}  bool isEmpty(Queue *q) {  return q->front == q->rear;  
}  void enqueue(Queue *q, int x) {  q->q[q->rear].data = x;  q->rear = (q->rear + 1) % N; // 使用循环队列防止溢出  
}  int dequeue(Queue *q) {  if (isEmpty(q)) return -1; // 队列为空,返回错误标识  int x = q->q[q->front].data;  q->front = (q->front + 1) % N;  return x;  
}  void add(int a, int b, int c) {  e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;  
}  int spfa() {  memset(dis, INF, sizeof(dis));  dis[1] = 0;  Queue q;  initQueue(&q);  enqueue(&q, 1);  st[1] = true;  while (!isEmpty(&q)) {  int t = dequeue(&q);  st[t] = false;  for (int i = h[t]; i != -1; i = ne[i]) {  int j = e[i];  if (dis[j] > dis[t] + w[i]) {  dis[j] = dis[t] + w[i];  if (!st[j]) {  enqueue(&q, j);  st[j] = true;  }  }  }  }  return dis[n];  
}  int main() {  scanf("%d%d", &n, &m);  memset(h, -1, sizeof(h));  while (m--) {  int a, b, c;  scanf("%d%d%d", &a, &b, &c);  add(a, b, c);  }  int t = spfa();  if (t == INF) printf("impossible\n");  else printf("%d\n", t);  return 0;  
}

 python:

from collections import dequeN = 100010n, m = map(int, input().split())
h = [-1] * N
w = [0] * N
e = [0] * N
ne = [0] * N
dis = [float('inf')] * N
st = [False] * N
q = deque()def add(a, b, c):global idxe[idx] = bw[idx] = cne[idx] = h[a]h[a] = idxidx += 1def spfa():global disdis[1] = 0q.append(1)st[1] = Truewhile q:t = q.popleft()st[t] = Falsei = h[t]while i != -1:j = e[i]if dis[j] > dis[t] + w[i]:dis[j] = dis[t] + w[i]if not st[j]:q.append(j)st[j] = Truei = ne[i]return dis[n]idx = 0
for _ in range(m):a, b, c = map(int, input().split())add(a, b, c)t = spfa()if t == float('inf'):print("impossible")
else:print(t)

5.spfa拓展:判断负环

原理:鸽笼原理+三角不等式

使用spfa算法解决是否存在负环问题

求负环的常用方法,基于SPFA,一般都用方法 2(该题也是用方法 2):

方法 1:统计每个点入队的次数,如果某个点入队n次,则说明存在负环
方法 2:统计当前每个点的最短路中所包含的边数,如果某点的最短路所包含的边数大于等于n,则也说明存在环

每次做一遍spfa()一定是正确的,但时间复杂度较高,可能会超时。初始时将所有点插入队列中可以按如下方式理解:
在原图的基础上新建一个虚拟源点,从该点向其他所有点连一条权值为0的有向边。那么原图有负环等价于新图有负环。此时在新图上做spfa,将虚拟源点加入队列中。然后进行spfa的第一次迭代,这时会将所有点的距离更新并将所有点插入队列中。执行到这一步,就等价于视频中的做法了。那么视频中的做法可以找到负环,等价于这次spfa可以找到负环,等价于新图有负环,等价于原图有负环。得证。

1、dist[x] 记录虚拟源点到x的最短距离

2、cnt[x] 记录当前x点到虚拟源点最短路的边数,初始每个点到虚拟源点的距离为0,只要他能再走n步,即cnt[x] >= n,则表示该图中一定存在负环,由于从虚拟源点到x至少经过n条边时,则说明图中至少有n + 1个点,表示一定有点是重复使用

3、若dist[j] > dist[t] + w[i],则表示从t点走到j点能够让权值变少,因此进行对该点j进行更新,并且对应cnt[j] = cnt[t] + 1,往前走一步

注意:该题是判断是否存在负环,并非判断是否存在从1开始的负环,因此需要将所有的点都加入队列中,更新周围的点

引入一个cnt数组,记录每个点经过的边数 

 e.g.

 但是,如果从1开始到不了负环地方,那么就会出问题,我们的解决方法是一开始把所有的点都放入队列中:(本质就是以每个点为起点做一遍spfa)

for(int i=1;i<=n;i++){
    st[i]=1;
    q.push(i);
}

 需要再cnt基础上更改的地方:

 dis[j]=dis[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;

还有对于cnt数组的初始化,还有把spfa变成布尔函数

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>using namespace std;const int N = 100010;int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dis[N];
int cnt[N];
bool st[N];
queue<int> q;
void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}bool spfa(){memset(dis,0x3f,sizeof dis);
for(int i=1;i<=n;i++){st[i]=1;q.push(i);
}dis[1]=0;q.push(1);st[1]=1;while(q.size()){auto t=q.front();q.pop();st[t]=0;for(int i=h[t];i!=-1;i=ne[i]){int j=e[i];if(dis[j]>dis[t]+w[i]){dis[j]=dis[t]+w[i];cnt[j]=cnt[t]+1;if(cnt[j]>=n) return true;if(!st[j]){q.push(j);st[j]=1;}}}}
return false;
}
int main()
{scanf("%d%d", &n, &m);memset(h, -1, sizeof h);while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}
if(spfa()) puts("Yes");
else puts("No");return 0;
}

多源汇最短路问题:

6.Floyd算法

原题:

原理:基于动态规划:

d[k,i,j]表示从第i个点出发到达j,只经过1~k个点的最短距离

状态转移方程:d[k,i,j]=d[k-1,i,k]+d[k-1,k,j]

发现:k与k-1刚好可以消去这个维度,用一个数组就可以实现

d[i,j]=d[i,k]+d[k,j]

算法时间复杂度:\mathcal{O}(n^3)

具体:

假设节点序号是从1到n。
    假设f[0][i][j]是一个n*n的矩阵,第i行第j列代表从i到j的权值,如果i到j有边,那么其值就为ci,j(边ij的权值)。
    如果没有边,那么其值就为无穷大。

    f[k][i][j]代表(k的取值范围是从1到n),在考虑了从1到k的节点作为中间经过的节点时,从i到j的最短路径的长度。

    比如,f[1][i][j]就代表了,在考虑了1节点作为中间经过的节点时,从i到j的最短路径的长度。
    分析可知,f[1][i][j]的值无非就是两种情况,而现在需要分析的路径也无非两种情况,i->j,i->1->j:
    【1】f[0][i][j]:i->j这种路径的长度,小于,i->1->j这种路径的长度
    【2】f[0][i][1]+f[0][1][j]:i->1->j这种路径的长度,小于,i->j这种路径的长度


    形式化说明如下:
    f[k][i][j]可以从两种情况转移而来:
    【1】从f[k−1][i][j]转移而来,表示i到j的最短路径不经过k这个节点
    【2】从f[k−1][i][k]+f[k−1][k][j]转移而来,表示i到j的最短路径经过k这个节点

    总结就是:f[k][i][j]=min(f[k−1][i][j],f[k−1][i][k]+f[k−1][k][j])
    从总结上来看,发现f[k]只可能与f[k−1]有关。

初始化与读入邻接矩阵(存在自环和重边的时候):

for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )if (i == j) d[i][j] = 0;else d[i][j] = INF;while (m -- )
{int a, b, c;scanf("%d%d%d", &a, &b, &c);d[a][b] = min(d[a][b], c);
}

c++:

#include <iostream>
using namespace std;const int N = 210, INF = 1e9;int n, m, Q;
int d[N][N];
void floyd(){for(int k=1;k<=n;k++){for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){d[i][j]=min(d[i][j],d[i][k]+d[k][j]);}}}
}
int main()
{scanf("%d%d%d", &n, &m, &Q);for (int i = 1; i <= n; i ++ )for (int j = 1; j <= n; j ++ )if (i == j) d[i][j] = 0;else d[i][j] = INF;while (m -- ){int a, b, c;scanf("%d%d%d", &a, &b, &c);d[a][b] = min(d[a][b], c);}floyd();while (Q -- ){int a, b;scanf("%d%d", &a, &b);int t = d[a][b];if (t > INF / 2) puts("impossible");else printf("%d\n", t);}return 0;
}

c:

#include <stdio.h>#define N 210
#define INF 1000000000int n, m, Q;
int d[N][N];void floyd() {for (int k = 1; k <= n; k++) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (d[i][k] < INF && d[k][j] < INF) {int new_dist = d[i][k] + d[k][j];if (new_dist < d[i][j]) {d[i][j] = new_dist;}}}}}
}int main() {scanf("%d%d%d", &n, &m, &Q);for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (i == j) {d[i][j] = 0;} else {d[i][j] = INF;}}}while (m--) {int a, b, c;scanf("%d%d%d", &a, &b, &c);if (c < d[a][b]) {d[a][b] = c;}}floyd();while (Q--) {int a, b;scanf("%d%d", &a, &b);int t = d[a][b];if (t > INF / 2) {puts("impossible");} else {printf("%d\n", t);}}return 0;
}

java:

import java.util.Scanner;public class Main {static final int N = 210;static final int INF = 1000000000;static int n, m, Q;static int[][] d = new int[N][N];public static void floyd() {for (int k = 1; k <= n; k++) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {d[i][j] = Math.min(d[i][j], d[i][k] + d[k][j]);}}}}public static void main(String[] args) {Scanner scanner = new Scanner(System.in);n = scanner.nextInt();m = scanner.nextInt();Q = scanner.nextInt();for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (i == j) d[i][j] = 0;else d[i][j] = INF;}}while (m-- > 0) {int a = scanner.nextInt();int b = scanner.nextInt();int c = scanner.nextInt();d[a][b] = Math.min(d[a][b], c);}floyd();while (Q-- > 0) {int a = scanner.nextInt();int b = scanner.nextInt();int t = d[a][b];if (t > INF / 2) {System.out.println("impossible");} else {System.out.println(t);}}scanner.close();}
}

python:

import sysN = 210
INF = 10**9def floyd():global n, dfor k in range(1, n+1):for i in range(1, n+1):for j in range(1, n+1):d[i][j] = min(d[i][j], d[i][k] + d[k][j])if __name__ == "__main__":n, m, Q = map(int, input().split())d = [[INF for _ in range(N)] for _ in range(N)]for i in range(1, n+1):d[i][i] = 0for _ in range(m):a, b, c = map(int, input().split())d[a][b] = min(d[a][b], c)floyd()for _ in range(Q):a, b = map(int, input().split())t = d[a][b]if t > INF // 2:print("impossible")else:print(t)

Go语言:

package mainimport "fmt"const N = 210
const INF = 1000000000var n, m, Q int
var d [N][N]intfunc floyd() {for k := 1; k <= n; k++ {for i := 1; i <= n; i++ {for j := 1; j <= n; j++ {if d[i][k] < INF && d[k][j] < INF {newDist := d[i][k] + d[k][j]if newDist < d[i][j] {d[i][j] = newDist}}}}}
}func main() {fmt.Scanf("%d%d%d", &n, &m, &Q)for i := 1; i <= n; i++ {for j := 1; j <= n; j++ {if i == j {d[i][j] = 0} else {d[i][j] = INF}}}for m > 0 {var a, b, c intfmt.Scanf("%d%d%d", &a, &b, &c)if c < d[a][b] {d[a][b] = c}m--}floyd()for Q > 0 {var a, b intfmt.Scanf("%d%d", &a, &b)t := d[a][b]if t > INF/2 {fmt.Println("impossible")} else {fmt.Println(t)}Q--}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/8046.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

搭建Docker私有镜像仓库

大家好&#xff0c;今天给大家分享一下如何搭建私有镜像仓库&#xff0c;私有镜像仓库可以更好地管理和控制镜像的访问和使用&#xff0c;确保只有授权的人员能够获取和使用特定的镜像&#xff0c;而且方便团队内部共享定制化的镜像&#xff0c;提高开发和部署效率&#xff0c;…

自动驾驶主流芯片及平台架构(三)低算力平台

前面有提到&#xff0c;自动驾驶等级每增加一级&#xff0c;所需要的芯片算力就会呈现十数倍的上升&#xff0c;L2级自动驾驶的算力需求仅要求2-2.5TOPS&#xff0c;但是L3级自动驾驶算力需求就需要20-30TOPS,到L4级需要200TOPS以上&#xff0c;L5级别算力需求则超过2000TOPS。…

购物车操作

添加购物车&#xff1a; 需求分析和接口设计&#xff1a; 接口设计&#xff1a; 请求方式&#xff1a;POST 请求路径&#xff1a;/user/shoppingCart/add请求参数&#xff1a;套餐id、菜品id、口味返回结果&#xff1a;code、data、msg 数据库设计&#xff1a; 这上面出现了…

JAVA IO/NIO 知识点总结

一、常见 IO 模型简介 1. 阻塞IO模型 最传统的一种IO模型&#xff0c;即在读写数据过程中会发生阻塞现象。当用户线程发出IO请求之后&#xff0c;内核会去查看数据是否就绪&#xff0c;如果没有就绪就会等待数据就绪&#xff0c;而用户线程就会处于阻塞状态&#xff0c;用户线…

IOT-9608I-L ADC端口的使用(连续采样ADC值)

目录 概述 1 硬件介绍 1.1 认识硬件 1.2 引脚信号定义 2 软件功能实现 2.1 查看iio:device0下的接口信息 2.2 实现连续采样ADC 2.2.1 功能描述 2.2.2 代码实现 2.2.3 详细代码 3 测试 概述 本文主要讲述IOT-9608I-L ADC端口的使用方便&#xff0c;其内容包括板卡上的…

无人机运营合格证:民用无人机驾驶航空器运营合格证书

无人机运营合格证是指经国家相关部门审核通过并颁发给相应无人驾驶航空器运营机构的一种资质证明。获得该证书的机构具备相关的技术和管理能力&#xff0c;能够安全、合规地运营无人驾驶航空器。 无人机运营合格证的申请流程一般包括报名、培训学习、考试准备、考试报名、考试…

fabric搭建生产网络

fabric搭建生产网络 一、生成组织结构与身份证书 解包 hyperledger-fabric-linux-amd64-2.5.0.tar.gz 1.1、crypto-config.yaml配置文件 ./bin/cryptogen showtemplate > crypto-config.yaml 将crypto-config.yaml内容修改为&#xff1a; # -------------------------…

网络基础-默认网关

默认网关&#xff0c;又称缺省网关&#xff0c;缺省路由器&#xff1b;它是指在一个连接两个不同网络的设备&#xff0c;为网关设备&#xff1b;当主机需要发送数据包到另一个子网或者另一个网络时&#xff0c;它会首先检查目标地址是否在本地子网内&#xff1b;如果不在本地子…

【C++干货基地】揭秘C++STL库的魅力:stiring的初步了解和使用

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引入 哈喽各位铁汁们好啊&#xff0c;我是博主鸽芷咕《C干货基地》是由我的襄阳家乡零食基地有感而发&#xff0c;不知道各位的…

分布式与一致性协议之ZAB协议(六)

ZAB协议 成员发现 成员发现是通过跟随者和领导者交互来完成的&#xff0c;目标是确保大多数节点对领导者的关系没有异议&#xff0c;也就是确立领导者的领导地位。成员发现的实现流程如图所示。 1.领导者选举结束&#xff0c;节点进入跟随者状态或者领导者状态后&#xff0…

快速搭建linux虚拟机环境

1、虚拟机资源 VMwareWorkstation&#xff1a;Download VMware Workstation Pro virtualbox&#xff1a;Oracle VM VirtualBox 2、虚拟机系统资源 链接&#xff1a;系统资源链接 提取码&#xff1a;0gat 说明&#xff1a;此处的系统资源是采用VMwareWorkstation 虚拟机进…

简单两步将Lllama、Qwen等开源大模型安装到自己的电脑上

现在已经有非常多优秀的开源大语言模型了&#xff0c;比如Command R、Mistral、Qwen、MiniMax、Baichuan、Phi3等&#xff0c;其中Lllama3和Qwen等已经和GPT4的性能比较接近了。 如果能把这些免费的开源大模型部署到本地电脑或手机上&#xff0c;可以完全自由的使用&#xff0…

深入探索van Emde Boas树:原理、操作与C语言实现

van Emde Boas (vEB) 树是一种高效的数据结构&#xff0c;用于处理整数集合。它是由荷兰计算机科学家Jan van Emde Boas在1977年提出的。vEB树在处理整数集合的查找、插入、删除和迭代操作时&#xff0c;能够以接近最优的时间复杂度运行。vEB树特别适合于那些元素数量在某个较小…

【边东随笔】(2) “顶级掠食者” 的生存智慧:信心 | 狠心 | 耐心

&#xff08;北美鳄龟, Alligator Snapper&#xff09; "优雅&#xff0c;且致命。" 非常谨慎&#xff0c;在水域中会先找到躲避将自身安置于有利地形。浮出水面换气&#xff0c;水体稍有异动就会退回水中&#xff0c;优秀掠食者对自身优势牢牢的把握&#xff08; 信…

hadoop学习---基于Hive的教育平台数据仓库分析案例(二)

衔接第一部分&#xff0c;第一部分请点击&#xff1a;基于Hive的教育平台数据仓库分析案例&#xff08;一&#xff09; 意向用户模块&#xff08;全量分析&#xff09;&#xff1a; 需求指标&#xff1a; 需求一: 计期内&#xff0c;新增意向客户&#xff08;包含自己录入的意…

kraken2 最新版安装,极简模式

kraken2 git clone https://github.com/DerrickWood/kraken2.gitcd kraken2./install_kraken2.sh /opt/krakenvim .bashrc ---------------- # Kraken export PATH"/opt/kraken:$PATH" ----------------source .bashrc Note: 不晓得是不是我设置了清华源&#xff0c…

下载源代码并交叉编译riscv FreeBSD系统和内核

RISCV系统曾经让人神秘到无法接触&#xff0c;交叉编译更是只有耳闻&#xff0c;现在随着RISCV的普及&#xff0c;它们神秘的面纱已经被慢慢揭开。 交叉编译作为RISCV系统中的一个重要环节&#xff0c;也随着RISCV的普及而变得更加容易理解和操作。交叉编译允许开发者在一个平…

LeetCode算法题:8.字符串转换整数 (atoi)

请你来实现一个 myAtoi(string s) 函数&#xff0c;使其能将字符串转换成一个 32 位有符号整数&#xff08;类似 C/C 中的 atoi 函数&#xff09;。 函数 myAtoi(string s) 的算法如下&#xff1a; 读入字符串并丢弃无用的前导空格检查下一个字符&#xff08;假设还未到字符末…

WordPress原创插件:当日24小时发布文章标题变红

WordPress原创插件&#xff1a;当日24小时发布文章标题变红 <?php// 添加自定义样式 function title_red_plugin_styles() {$current_time time();$post_time get_the_time(U);$time_difference $current_time - $post_time;if ($time_difference < 86400) {echo&l…

24_Scala集合Map

文章目录 Scala集合Map1.构建Map2.增删改查3.Map的get操作细节 Scala集合Map –默认immutable –概念和Java一致 1.构建Map –创建kv键值对 && kv键值对的表达 –创建immutable map –创建mutable map //1.1 构建一个kv键值对 val kv "a" -> 1 print…