使用python实现自动化拉取压缩包并处理流程

使用python实现自动化拉取压缩包并处理流程

  • 实现成果展示
  • 使用说明

实现成果展示

最终文件
图片文件
拉取压缩文件解压后的lcm文件以及解析文件目录

使用说明

执行./run.sh
脚本中的内容主要功能是:
1、从远程服务器上下拉制定时间更新的数据
2、将数据中的zip拷贝到指定文件夹内
3、解压后删除所有除了lcm之外的文件
4、新建一个out文件夹执行解析lcm可执行文件,保存所有的解析后文件
5、新建一个analysis文件夹并执行analysis脚本,对out文件夹中的内容进行analysis,并把生成的5个图片以及三个文档保存到analysis中
6、生成的5个图片是:
gnss状态,gnss状态解释,中心线差值对比,gnssQC,车道线数据

#!/usr/bin/python
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import sys
import numpy as np
import re
import math
import scipy.spatial as spt  # Scipy库空间算法,使用kd树查找最近点
import csv  # 调用数据保存文件
import pandas as pd
import cv2
import os
import time
import datetime
from datetime import datetime, timedelta
from collections import Counter
import statisticsdef write_conclution(data_path, status, last_time_list):value_counts = Counter(status)# 计算每个值所占的比例total_count = len(status)value_ratios = {value: count / total_count for value,count in value_counts.items()}# last time mode nummode = statistics.mode(last_time_list)minutes = mode // 60000seconds = (mode // 1000) % 60milliseconds = mode % 1000mode = "{:02d}'{:02d}''{:03d}'''".format(minutes, seconds, milliseconds)# last time min numminimum = min(last_time_list)minutes = minimum // 60000seconds = (minimum // 1000) % 60milliseconds = minimum % 1000minimum = "{:02d}'{:02d}''{:03d}'''".format(minutes, seconds, milliseconds)# last time mean nummean_time = int(statistics.mean(last_time_list))minutes = mean_time // 60000seconds = (mean_time // 1000) % 60milliseconds = mean_time % 1000mean_time = "{:02d}'{:02d}''{:03d}'''".format(minutes, seconds, milliseconds)# last time max nummaxmum = max(last_time_list)minutes = maxmum // 60000seconds = (maxmum // 1000) % 60milliseconds = maxmum % 1000#处理成文件形式maxmum = "{:02d}'{:02d}''{:03d}'''".format(minutes, seconds, milliseconds)with open(data_path + "conclution.csv", '+w') as loc_f:loc_f.write("1、概述" "\n""1.1、路线以及情况概述" "\n"'\n'"本路线是             共计      km;" "\n""全程定位状态较为正常,绝大部分时间为4(状态持续时间占全程的  % )" "\n""定位状态变化描述:车辆穿过高架桥时容易跳变为1, 在经过较短距离的横跨道路广告牌时出现定位状态变换为4->5->4" "\n""在短时间内(一般认为从上一个桥或其他的物体下出到进入下一个桥或者空中物体下的时间不超过5s)经过多次桥下,定位状态会出现多次4->5(2)->1->0->1->5(2)->4跳变,时间不超过6秒" "\n""定位状态在经过隧道(一般是指除入口和出口之外封闭的环境)时,状态会持续保持0""\n""\n""1.2 异常情况描述""\n"'\n'"localization_conclution""\n""\n""1.3、异常点汇总表格""\n"'\n'"附件为全程定位状态变化表格""\n"'\n'"gnss status 表示含义为:""\n""解状态是4,是最高精度的解状态,是通过地基增强方式达到的,精度最高;"  "\n""解状态是5或2,是精度稍低一点的解状态,也是通过地基地基增强方式达到,一般是可用卫星数少一点,差分龄期大一些,可能会有这样的现象,多在环境不是很理想的条件下,如林荫路、城市峡谷;" "\n""解状态是1,是达到卫星定位,不依赖地基增强就能达到的解状态,如果差分数据传输正常,那应该是搜星数特别少,少于10颗,或者差分龄期特别大,大于30S,会出现解状态是1的;"  "\n""解状态是0,是表示没有定位,搜星数不足以解算出位置。" "\n""\n""\n""1.4、该路段定位总结:" "\n"'\n')with open(data_path + "conclution.csv", '+a') as loc_f:for value, ratio in value_ratios.items():loc_f.write("\t定位状态为" + f"{value}" +"占全程的百分比为:" + f"{ratio:.2%}" + "\n")with open(data_path + "conclution.csv", '+a') as loc_f:loc_f.write("\t 1.4.2、定位状态为0或1时, 多数情况是因为经过(桥梁,广告牌,龙门架,隧道,大车跟随)" "\n""\t 1.4.3、定位状态跳变最长的时长为: " + str(maxmum) + "\n""\t 1.4.4、定位状态跳变时长最短为: " + str(minimum) + "\n""\t 1.4.5、定位状态跳变平均时长为:" +str(mean_time) + '\t' + "众位数为:  " + str(mode) + "\n""该路线下的定位状态(gnss status)跳变时间较短,ins定位精度误差保持在(    ,    )范围(m)内,定位精度良好." "\n""\n""1.5、该路段下的感知识别车道线与联编程序结合四维高精地图输出的车道线对比情况:   " "\n"'\n'"\t 1.5.1 车道线与与联编程序结合四维高精地图输出的车道线基本拟合占比为:     \n""\t 1.5.2 车道线与与联编程序结合四维高精地图输出的车道线拟合较好占比为:     \n""\t 1.5.3 车道线与与联编程序结合四维高精地图输出的车道线拟合较差占比为:     \n""\t 1.5.4 车道线与与联编程序结合四维高精地图输出的车道线没有拟合占比为:     \n""\t 该路线下的感知稳定,可以安全使用NOA     \n""\t 该路线下的感知比较稳定,可以在晴天且车道线清晰场景下使用NOA     \n""\t 该路线下的感知稳定性较差,请酌情使用NOA     \n""\n""\n""2、定位异常点分析:\n""\t 2.1 异常点解释 \n"'\n'"\t 2.2 异常点图片\n")def get_all_change_data(gnss_status):pairs = []for i in range(len(gnss_status)):if i == 0 or gnss_status[i] != gnss_status[i-1]:pairs.append((gnss_status[i], i))# print("Pairs:", pairs)index_ranges = []start_index = Nonepair0_sets = []pair1_sets = []for i in range(len(pairs)):if pairs[i][0] == 4:if start_index is not None:index_ranges.append((start_index, i))start_index = Noneelse:if start_index is None:start_index = iif len(pair0_sets) < start_index + 1:pair0_sets.append(set())pair1_sets.append(set())pair0_sets[start_index].add(pairs[i][0])pair1_sets[start_index].add(pairs[i][1])# 处理最后一个区间if start_index is not None:index_ranges.append((start_index, len(pairs)))# print("索引区间:", index_ranges)# print("pair[i][0]集合:", pair0_sets)# print("pair[i][1]集合:", pair1_sets)def get_all_file_name(data_path):img_list = os.listdir(data_path)# print(img_list)img_list = sorted(img_list)# print(img_list)return img_listdef check_number(lst, num):result = []for sub_lst in lst:if num in sub_lst:result.append(True)else:result.append(False)return resultdef update_index_ranges(lst, result_check, index_ranges):result = []for sub_lst, check in zip(lst, result_check):if check:reversed_lst = sub_lst[::-1]last_index = len(sub_lst) - reversed_lst.index(4) - 1result.append(last_index)else:result.append(0)update_index_range = []for idx, sub_lst, res in zip(index_ranges, lst, result):if len(sub_lst) > res:change_pair = idxfirst_element = change_pair[0]result_change = first_element + reschange_pair = (result_change, change_pair[1])idx = change_pairupdate_index_range.append(idx)# print(result, "\n", update_index_range)return result, update_index_rangedef get_last_time(start_utc_time, end_time):dt1 = datetime.fromtimestamp(start_utc_time / 1000000)dt2 = datetime.fromtimestamp(end_time / 1000000)diff = dt2 - dt1# 提取小时、分钟和秒数year = dt1.yearmonth = dt1.monthday = dt1.dayhour = dt1.hourminute = dt1.minutesecond = dt1.second# 打印时分秒# print(f"{year}{month}{day}{hour:02d}:{minute:02d}:{second:02d}")start_time = f"{year}{month}{day}{hour:02d}:{minute:02d}:{second:02d}"year = dt2.yearmonth = dt2.monthday = dt2.dayhour = dt2.hourminute = dt2.minutesecond = dt2.second# 打印时分秒# print(f"{year}{month}{day}{hour:02d}:{minute:02d}:{second:02d}")end_time = f"{year}{month}{day}{hour:02d}:{minute:02d}:{second:02d}"last_time = int(diff.total_seconds()*10000)last_time_origin = last_timeminutes = last_time // 60000seconds = (last_time // 1000) % 60milliseconds = last_time % 1000last_time = "{:02d}'{:02d}''{:03d}'''".format(minutes, seconds, milliseconds)return last_time, start_time, end_time, last_time_origindef localization_error_time_filter(status, vp31_lon, vp31_lat, log_time, data_path, file_name):file_save_path = data_path+file_namestatus_4_x, status_4_y = [], []status_5_x, status_5_y = [], []status_1_x, status_1_y = [], []status_0_x, status_0_y = [], []status_e_x, status_e_y = [], []res_no4_time, res_5_time, res_1_time, res_0_time, res_e_time = [], [], [], [], []# 20230916 add analysis loclaization gnss status part from difference and save start&end time last timewith open(file_save_path + "analysis_localization_origin.csv", '+w') as loc_f:loc_f.write("error_start_time,error_end_time,error_status,last_time(ms)\n")with open(file_save_path + "analysis_localization_new.csv", '+w') as loc_f:loc_f.write("序号,起始时间,终止时间,状态变化,持续时间(min'sec''ms'''),解释,图例\n")# 20230920 add analysis localization gnss status change# loc_f.closefor i in range(0, len(status)):if status[i] == 4:status_4_x.append(vp31_lon[i])status_4_y.append(vp31_lat[i])elif status[i] == 5:status_5_x.append(vp31_lon[i])status_5_y.append(vp31_lat[i])elif status[i] == 1:status_1_x.append(vp31_lon[i])status_1_y.append(vp31_lat[i])elif status[i] == 0:status_0_x.append(vp31_lon[i])status_0_y.append(vp31_lat[i])else:status_e_x.append(vp31_lon[i])status_e_y.append(vp31_lat[i])# 20230920 add new part to analysis gnss status changesplit_indices = [i for i in range(1, len(status)) if status[i] == 4 and status[i-1] != 4]sublists = []start = 0for index in split_indices:sublists.append(status[start:index])start = indexsublists.append(status[start:])# print("分割后的子列表:", sublists)index_ranges = [(start, start + len(sublist) - 1) for start,sublist in zip([0] + [index + 1 for index in split_indices], sublists)]last_pair = index_ranges[-1]second_element = last_pair[1]result = second_element - 1updated_pair = (last_pair[0], result)index_ranges[-1] = updated_pair# print("每个子列表的索引区间集合::", index_ranges)unique_sublists = [[x for x, y in zip(sublist, sublist[1:]) if x != y] + [sublist[-1]] for sublist in sublists]# print("删除相邻重复字符后的子列表:", unique_sublists)last_time_list = []num = 4result_check = check_number(sublists, num)# print(result_check)index_status_change = 1four_result, updated_index_ranges = update_index_ranges(sublists, result_check, index_ranges)with open(file_save_path + "analysis_localization_new.csv", '+a') as loc_f:for idx_range, sublist in zip(updated_index_ranges, unique_sublists):if idx_range[1] < len(log_time) and idx_range[0] < len(log_time):last_time, start_time, end_time, last_time_origin = get_last_time(log_time[idx_range[0]], log_time[idx_range[1]])loc_f.write(str(index_status_change)+","+str(start_time) + "," + str(end_time) + ","+ " ".join(map(str, sublist)) + "," + str(last_time) + "\n")last_time_list.append(last_time_origin)elif idx_range[0] >= len(log_time):continueelse:last_time, start_time, end_time, last_time_origin = get_last_time(log_time[idx_range[0]], log_time[len(log_time)-1])loc_f.write(str(index_status_change)+","+str(start_time) + "," + str(end_time) + ","+ " ".join(map(str, sublist)) + "," + str(last_time) + "\n")last_time_list.append(last_time_origin)index_status_change += 1# add last time list:write_conclution(file_save_path, status, last_time_list)# 20230916 addzero_indices = [i for i, x in enumerate(status) if x == 0]one_indices = [i for i, x in enumerate(status) if x == 1]four_indices = [i for i, x in enumerate(status) if x == 4]five_indices = [i for i, x in enumerate(status) if x == 5]other_indices = [i for i, x in enumerate(status) if x not in [0, 1, 4, 5]]zero_ranges = []one_ranges = []four_ranges = []five_ranges = []other_ranges = []if zero_indices:start = zero_indices[0]for i in range(1, len(zero_indices)):if zero_indices[i] != zero_indices[i-1] + 1:zero_ranges.append((start, zero_indices[i-1]))start = zero_indices[i]zero_ranges.append((start, zero_indices[-1]))for r in zero_ranges:last_time, start_time, end_time, last_time_origin = get_last_time(log_time[r[0]], log_time[r[1]])with open(file_save_path + "analysis_localization_origin.csv", '+a') as loc_f:loc_f.write(start_time + ',' + end_time +',' + '0' + ',' + str(last_time) + '\n')# print("0值的索引区间", zero_ranges)if one_indices:start = one_indices[0]for i in range(1, len(one_indices)):if one_indices[i] != one_indices[i-1] + 1:one_ranges.append((start, one_indices[i-1]))start = one_indices[i]one_ranges.append((start, one_indices[-1]))for r in one_ranges:last_time, start_time, end_time, last_time_origin = get_last_time(log_time[r[0]], log_time[r[1]])with open(file_save_path + "analysis_localization_origin.csv", '+a') as loc_f:loc_f.write(start_time + ',' + end_time +',' + '1' + ',' + str(last_time) + '\n')# print("1值的索引区间", one_ranges)if four_indices:start = four_indices[0]for i in range(1, len(four_indices)):if four_indices[i] != four_indices[i-1] + 1:four_ranges.append((start, four_indices[i-1]))start = four_indices[i]four_ranges.append((start, four_indices[-1]))for r in four_ranges:last_time, start_time, end_time, last_time_origin = get_last_time(log_time[r[0]], log_time[r[1]])with open(file_save_path + "analysis_localization_origin.csv", '+a') as loc_f:loc_f.write(start_time + ',' + end_time +',' + '4' + ',' + str(last_time) + '\n')# print("4值的索引区间", four_ranges)if five_indices:start = five_indices[0]for i in range(1, len(five_indices)):if five_indices[i] != five_indices[i-1] + 1:five_ranges.append((start, five_indices[i-1]))start = five_indices[i]five_ranges.append((start, five_indices[-1]))for r in five_ranges:last_time, start_time, end_time, last_time_origin = get_last_time(log_time[r[0]], log_time[r[1]])with open(file_save_path + "analysis_localization_origin.csv", '+a') as loc_f:loc_f.write(start_time + ',' + end_time +',' + '5' + ',' + str(last_time) + '\n')# print("5值的索引区间", five_ranges)if other_indices:start = other_indices[0]for i in range(1, len(other_indices)):if other_indices[i] != other_indices[i-1] + 1:other_ranges.append((start, other_indices[i-1]))start = other_indices[i]other_ranges.append((start, other_indices[-1]))for r in other_ranges:last_time, start_time, end_time, last_time_origin = get_last_time(log_time[r[0]], log_time[r[1]])with open(file_save_path + "analysis_localization_origin.csv", '+a') as loc_f:loc_f.write(start_time + ',' + end_time +',' + '2' + ',' + str(last_time) + '\n')# print("e值的索引区间", other_ranges)return res_no4_time, res_5_time, res_1_time, res_0_time, res_e_timedef show_status(status, vp31_lon, vp31_lat):status_4_x, status_4_y, status_4_idx = [], [], []status_5_x, status_5_y, status_5_idx = [], [], []status_1_x, status_1_y, status_1_idx = [], [], []status_0_x, status_0_y, status_0_idx = [], [], []status_e_x, status_e_y, status_e_idx = [], [], []for i in range(0, len(status)):if status[i] == 4:status_4_x.append(vp31_lon[i])status_4_y.append(vp31_lat[i])status_4_idx.append(i)elif status[i] == 5:status_5_x.append(vp31_lon[i])status_5_y.append(vp31_lat[i])status_5_idx.append(i)elif status[i] == 1:status_1_x.append(vp31_lon[i])status_1_y.append(vp31_lat[i])status_1_idx.append(i)elif status[i] == 0:status_0_x.append(vp31_lon[i])status_0_y.append(vp31_lat[i])status_0_idx.append(i)else:status_e_x.append(vp31_lon[i])status_e_y.append(vp31_lat[i])status_e_idx.append(i)plt.scatter(status_4_x, status_4_y, marker='o',color='green', label='status = 4')  # map headingplt.scatter(status_5_x, status_5_y, marker='o',color='blue', label='status = 5')  # ins_yawplt.scatter(status_1_x, status_1_y, marker='o',color='red', label='status = 1')  # map headingplt.scatter(status_0_x, status_0_y, marker='o',color='black', label='status = 0')  # ins_yaw5plt.scatter(status_e_x, status_e_y, marker='o',color='yellow', label='status else')def GPS_data_filter(x, y, z, x1, y1, z1):x_res, y_res, z_res = [], [], []x1_res, y1_res, z1_res = [], [], []for i in range(0, len(x)):if x1[i] != 0 and y1[i] != 0:x_res.append(x[i])y_res.append(y[i])z_res.append(z[i])x1_res.append(x1[i])y1_res.append(y1[i])z1_res.append(z1[i])return x_res, y_res, z_res, x1_res, y1_res, z1_resdef cma_data_filter(diff):diff_res = []for i in range(0, len(diff)):if diff[i] <= 5:diff_res.append(diff[i])else:diff_res.append(-1)return diff_resdef line_filter(l):l_res = []for i in range(0, len(l)):if l[i] >= 0:l_res.append(l[i])else:l_res.append(-1)return l_resdef cma_filter(str):if str == 'nan':return '-1'else:return strdef show_counter(lst, data_path):counter = Counter(lst)# 计算总数量total_count = sum(counter.values())# 计算每个数字的占比percentage = {num: count / total_count for num, count in counter.items()}# 打印结果with open(data_path + "conclution.csv", '+a') as loc_f:loc_f.write("3、定位QC结果查询:\n")for num, count in counter.items():loc_f.write("数字 {} 出现的次数:{},占比:{:.2%}".format(num, count, percentage[num]) + "\n")# 提取数字和对应的次数和占比numbers = list(counter.keys())counts = list(counter.values())percentages = [percentage[num] for num in numbers]plt.figure()# 绘制条形图plt.bar(numbers, counts)# 添加标题和标签plt.title('Number Counts')plt.xlabel('Numbers')plt.ylabel('Counts')plt.savefig(data_path + "localization_bar"+'.png', dpi=512)# 显示图形# plt.show()def localization_QC(gnss_lon, gnss_lat, ins_lon,ins_lat, gnss_status, ins_status, data_path):cnter_status = 1cnter_lonlat = 1res_cnter = []for gnss_lon, gnss_lat, ins_lon, ins_lat, gnss_status, ins_status in zip(gnss_lon, gnss_lat, ins_lon,ins_lat, gnss_status, ins_status):if gnss_status == 4 and ins_status == 1:cnter_status *= 1elif gnss_status == 5 and ins_status == 1:cnter_status *= 1.5elif gnss_status == 5 and ins_status == 0:cnter_status *= 2elif gnss_status == 4 and ins_status == 0:cnter_status *= 2.5else:cnter_status *= 0if abs(gnss_lon - ins_lon) < 2e-6 and abs(gnss_lat - ins_lat) < 2e-6:cnter_lonlat *= 1elif abs(gnss_lon - ins_lon) < 4e-6 and abs(gnss_lat - ins_lat) < 4e-6:cnter_lonlat *= 2else:cnter_lonlat *= -1res_cnter.append(cnter_status * cnter_lonlat)cnter_status = 1cnter_lonlat = 1show_counter(res_cnter, data_path)def Ablines_QC(line1_length, line2_length, diff1, diff2, diff3):cnter_ab1, cnter_ab2 = 1, 1cnter_vp1, cnter_vp2, cnter_vp3 = 1, 1, 1res_cnt_ab1, res_cnt_ab2 = [], []res_cnt_vp = []for line1_length, line2_length, diff1, diff2, diff3 in zip(line1_length,line2_length, diff1, diff2, diff3):if line1_length >= 100:cnter_ab1 *= 1elif line1_length >= 50:cnter_ab1 *= 1.5elif line1_length >= 20:cnter_ab1 *= 2else:cnter_ab1 *= -1if line2_length >= 100:cnter_ab2 *= 1elif line2_length >= 50:cnter_ab2 *= 1.5elif line2_length >= 20:cnter_ab2 *= 2else:cnter_ab2 *= 0res_cnt_ab1.append(cnter_ab1)res_cnt_ab2.append(cnter_ab2)if diff1 < 0.1:cnter_vp1 *= 1elif diff1 < 0.3:cnter_vp1 *= 1.5elif diff1 < 0.5:cnter_vp1 *= 2elif diff1 < 0.7:cnter_vp1 *= 2.5elif diff1 < 0.9:cnter_vp1 *= 3else:cnter_vp1 *= 0if diff2 < 0.1:cnter_vp2 *= 1elif diff2 < 0.3:cnter_vp2 *= 1.5elif diff2 < 0.5:cnter_vp2 *= 2elif diff2 < 0.7:cnter_vp2 *= 2.5elif diff2 < 0.9:cnter_vp2 *= 3else:cnter_vp2 *= -1if diff3 < 0.1:cnter_vp3 *= 1elif diff3 < 0.3:cnter_vp3 *= 1.5elif diff3 < 0.5:cnter_vp3 *= 2elif diff3 < 0.7:cnter_vp3 *= 2.5elif diff3 < 0.9:cnter_vp3 *= 3else:cnter_vp3 *= 0.000001cnter_vp = cnter_vp3*cnter_vp1*cnter_vp2res_cnt_vp.append(cnter_vp)cnter_ab1, cnter_ab2 = 1, 1cnter_vp1, cnter_vp2, cnter_vp3 = 1, 1, 1show_counter(res_cnt_ab1)show_counter(res_cnt_ab2)show_counter(res_cnt_vp)return res_cnt_ab1, res_cnt_ab2, res_cnt_vp# def Ablines_QC(line1, line2, line3, line4, vp_center_line, ab_center_line):def save_string_after_backslash(string):index = string.rfind('/')if index != -1:result = string[index+1:]else:result = stringreturn resultdef Prepare_data(file_name1, file_name2, data_path, analysis_data_path):file_name = save_string_after_backslash(file_name1)print("filename: ", file_name)# print_dis()file_name1 = str(data_path + file_name1)file_name2 = str(data_path + file_name2)data_line1 = [l.split('\n')[0].split(',')for l in open(file_name1, "r").readlines()[1:]]data_line2 = [l.split('\n')[0].split(',')for l in open(file_name2, "r").readlines()[1:]]gnss_timestamps = [int(l[0]) for l in data_line1]vp31_lon_ins = [float(l[2]) for l in data_line2]vp31_lat_ins = [float(l[3]) for l in data_line2]vp31_lon_gnss = [float(l[4]) for l in data_line2]vp31_lat_gnss = [float(l[5]) for l in data_line2]vp31_gnss_status = [int(l[8]) for l in data_line2]# print(vp31_gnss_status)vp31_ins_status = [int(l[9]) for l in data_line2]vp31_lon_gnss_f, vp31_lat_gnss_f, vp31_gnss_status_f, vp31_lon_ins_f, vp31_lat_ins_f, vp31_ins_status_f = GPS_data_filter(vp31_lon_gnss,vp31_lat_gnss, vp31_gnss_status, vp31_lon_ins, vp31_lat_ins, vp31_ins_status)# vp31_lon_ins, vp31_lat_ins, vp31_ins_status = GPS_data_filter(#     vp31_lon_ins, vp31_lat_ins, vp31_ins_status)log_time = [int(l[12]) for l in data_line2]diff1 = [float(cma_filter(l[0]))for l in data_line1]diff1 = cma_data_filter(diff1)diff2 = cma_data_filter([float(cma_filter(l[1]))for l in data_line1])diff3 = cma_data_filter([float(cma_filter(l[2]))for l in data_line1])l2 = line_filter([float(l[4]) for l in data_line1])l3 = line_filter([float(l[5]) for l in data_line1])idx = np.array([i for i in range(0, len(diff1))])idx_ins = np.array([i for i in range(0, len(vp31_ins_status))])idx_gnss = np.array([i for i in range(0, len(vp31_gnss_status))])idx3 = np.array([i for i in range(0, len(l2))])file_name = file_name[:-7]print("update name : ", file_name)data_path = analysis_data_path+'analysis/'print("analysis data path is:", data_path)# 记录所有数据信息localization_error_time_filter(vp31_gnss_status, vp31_lon_ins, vp31_lat_ins, log_time, data_path, file_name)# GNSS status & gnss filterplt.figure(1)plt.subplot(1, 2, 1)show_status(vp31_gnss_status, vp31_lon_ins, vp31_lat_ins)plt.legend(loc="upper right")plt.title("gnss status origin")plt.xlabel("lon")  # 横轴名称plt.ylabel("lat")  # 纵轴名称plt.subplot(1, 2, 2)show_status(vp31_gnss_status_f, vp31_lon_ins_f, vp31_lat_ins_f)plt.legend(loc="upper right")plt.title("gnss status filer")plt.xlabel("lon")  # 横轴名称plt.ylabel("lat")  # 纵轴名称plt.savefig(os.path.join(data_path, file_name +"gnss_status"+'.png'), dpi=1024)# plt.subplot(2, 2, 2)plt.clf()plt.figure(2)plt.plot(idx, diff1, ls='-', lw=2, label='center_line_diff',color='black')  # map headingplt.plot(idx, diff1, ls='-', lw=2, label='left_line_diff',color='blue')  # map headingplt.plot(idx, diff3, ls='-', lw=2, label='right_line_diff',color='red')  # map headingplt.plot()plt.legend()plt.title("line_diff")plt.xlabel("idx")  # 横轴名称plt.ylabel("diff(m)")  # 纵轴名称plt.savefig(os.path.join(data_path, file_name + "diff"+'.png'), dpi=512)plt.clf()plt.figure(3)plt.plot(idx_ins, vp31_ins_status, ls='-', lw=2, label='ins_status',color='red')plt.plot(idx_gnss, vp31_gnss_status, ls='-', lw=2, label='gnss_status',color='blue')plt.legend()plt.title("ins_status")plt.xlabel("idx")  # 横轴名称plt.ylabel("ins_status")plt.savefig(os.path.join(data_path, file_name +"gnss_status_explian"+'.png'),dpi=512)# plt.subplot(2, 2, 4)plt.clf()plt.figure(4)plt.plot(idx3, l2, ls='-', lw=2, label='line2_length',color='blue')plt.plot(idx3, l3, ls='-', lw=2, label='line3_length',color='black')plt.savefig(os.path.join(data_path, file_name + '.png'), dpi=512)# plt.legend()# plt.show()data_save_path = data_path+file_namelocalization_QC(vp31_lon_gnss, vp31_lat_gnss, vp31_lon_ins,vp31_lat_ins, vp31_gnss_status, vp31_ins_status, data_save_path)if __name__ == "__main__":if len(sys.argv) < 1:print(" please add file name!! ")sys.exit(1)data_path = sys.argv[1]analysis_data_path = data_path[:-4]print("analysis file save path is : ", analysis_data_path, '\n')# Prepare_data(file_name1, file_name2)file_name_list = get_all_file_name(data_path)for i in range(1, len(file_name_list), 2):Prepare_data(file_name_list[i-1], file_name_list[i], data_path, analysis_data_path)time.sleep(1)# if len(sys.argv) < 2:#     print(" please add file name!! ")#     sys.exit(1)# file_name1, file_name2 = sys.argv[1], sys.argv[2]# data_path = "路径"# Prepare_data(file_name1, file_name2, data_path)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/78592.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

香橙派打包qt文件报错“xcb 插件无法加载”与“QObject::moveToThread”线程错误的解决方案

PyQt 报错总结&#xff1a;打包文件过程&#xff0c;“xcb 插件无法加载”与“QObject::moveToThread”线程错误的解决方案全解析 在使用 PyQt5 搭建图形界面时&#xff0c;打包文件的过程中出现的问题&#xff0c;真难绷&#xff0c;搞了半天。 Qt 平台插件 xcb 无法加载QOb…

Missashe考研日记-day29

Missashe考研日记-day29 1 专业课408 学习时间&#xff1a;3h学习内容&#xff1a; 今天先是把虚拟存储剩余的课听完了&#xff0c;然后就是做课后选择题&#xff0c;57道&#xff0c;已经接受了OS课后题尤其多的事实了。解决并且理解完习题之后就开始预习文件管理的内容&…

【Linux】第十二章 安装和更新软件包

目录 1. 什么是RPM&#xff1f; 2. dnf是什么&#xff0c;它和rpm有什么联系和区别&#xff1f; 3. RHEL 中如何做才能启用对第三方存储库的支持&#xff1f; 4. 怎么理解RHEL9中的应用流(Application Streams)和模块(Modules)&#xff1f; 5. RHEL9 有两个必要的软件存储…

新时代下的存储过程开发实践与优化

随着现代应用系统的复杂度不断增加&#xff0c;数据库作为核心的数据存储和处理引擎&#xff0c;其性能和可靠性显得尤为重要。存储过程&#xff08;Stored Procedure&#xff09;作为一种封装在数据库中的应用逻辑&#xff0c;使得开发者能够在数据库层面实现数据操作、数据校…

从梯度消失到百层网络:ResNet 是如何改变深度学习成为经典的?

自AlexNet赢得2012年ImageNet竞赛以来&#xff0c;每个新的获胜架构通常都会增加更多层数以降低错误率。一段时间内&#xff0c;增加层数确实有效&#xff0c;但随着网络深度的增加&#xff0c;深度学习中一个常见的问题——梯度消失或梯度爆炸开始出现。 梯度消失问题会导致梯…

JVM——引入

什么是JVM&#xff1f;它与JDK、JRE的关系&#xff1f; JVM、JRE 和 JDK 是 Java 平台的三个核心组件&#xff0c;各自承担着不同的职责&#xff0c;它们之间的关系密不可分。理解它们的区别和联系有助于更好地开发、部署和运行 Java 应用程序。对于 Java 开发者来说&#xff…

PyCharm 2023升级2024 版本

windows下把老版本卸载之后&#xff0c;需要把环境变量&#xff0c;注册表信息删除。 并且把C:\Users\用户\AppData 文件夹下的 Local\JetBrains和Roaming\JetBrains 都删除&#xff0c;再重新安装 原旧项目升级的方式&#xff1a; 1.2023虚拟机的文件夹是venv 改为.venv…

从外卖大战看O2O新趋势:上门私厨平台系统架构设计解析

京东高调进军外卖市场&#xff0c;美团全力防守&#xff0c;两大巨头的竞争让整个行业风起云涌。但在这场外卖大战之外&#xff0c;一个更具潜力的细分市场正在悄然兴起——上门私厨服务。 与标准化外卖不同&#xff0c;上门私厨提供的是个性化定制服务。厨师带着新鲜食材上门现…

驱动开发系列53 - 一个OpenGL应用程序是如何调用到驱动厂商GL库的

一:概述 一个 OpenGL 应用程序调用 GPU 驱动的过程,主要是通过动态链接库(libGL.so)来完成的。本文从上到下梳理一下整个调用链,包含 GLVND、Mesa 或厂商驱动之间的关系。 二:调用关系 1. 首先一个 OpenGL 应用程序(比如游戏或图形渲染软件)在运行时会调用 OpenGL 提供…

springboot3 声明式 HTTP 接口

1 介绍 在 Spring 6 和 Spring Boot 3 中&#xff0c;我们可以使用 Java 接口来定义声明式的远程 HTTP 服务。这种方法受到 Feign 等流行 HTTP 客户端库的启发&#xff0c;与在 Spring Data 中定义 Repository 的方法类似。 声明式 HTTP 接口包括用于 HTTP exchange 的注解方法…

多级缓存架构设计与实践经验

多级缓存架构设计与实践经验 在互联网大厂Java求职者的面试中&#xff0c;经常会被问到关于多级缓存的架构设计和实践经验。本文通过一个故事场景来展示这些问题的实际解决方案。 第一轮提问 面试官&#xff1a;马架构&#xff0c;欢迎来到我们公司的面试现场。请问您对多级…

Mac「brew」快速安装Redis

安装Redis 步骤 1&#xff1a;安装 Redis 打开终端&#xff08;Terminal&#xff09;。 运行以下命令安装 Redis&#xff1a; brew install redis步骤 2&#xff1a;启动 Redis 安装完成后&#xff0c;可以使用以下命令启动 Redis 服务&#xff1a; brew services start redis…

文献阅读(一)植物应对干旱的生理学反应 | The physiology of plant responses to drought

分享一篇Science上的综述文章&#xff0c;主要探讨了植物应对干旱的生理机制&#xff0c;强调通过调控激素信号提升植物耐旱性、保障粮食安全的重要性。 摘要 干旱每年致使农作物产量的损失&#xff0c;比所有病原体造成损失的总和还要多。为适应土壤中的湿度梯度变化&#x…

if consteval

if consteval 是 C23 引入的新特性&#xff0c;该特性是关于immediate function 的&#xff0c;即consteval function。用于在编译时检查当前是否处于 立即函数上下文&#xff08;即常量求值环境&#xff09;&#xff0c;并根据结果选择执行不同的代码路径。它是对 std::is_con…

MANIPTRANS:通过残差学习实现高效的灵巧双手操作迁移

25年3月来自北京通用 AI 国家重点实验室、清华大学和北大的论文“ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning”。 人手在交互中起着核心作用&#xff0c;推动着灵巧机器人操作研究的不断深入。数据驱动的具身智能算法需要精确、大…

Field访问对象int字段,对象访问int字段,通过openjdk17 C++源码看对象字段访问原理

在Java反射机制中&#xff0c;访问对象的int类型字段值&#xff08;如field.getInt(object)&#xff09;的底层实现涉及JVM对内存偏移量的计算与直接内存访问。本文通过分析OpenJDK 17源码&#xff0c;揭示这一过程的核心实现逻辑。 一、字段偏移量计算 1. Java层初始化偏移量…

Java查询数据库表信息导出Word

参考: POI生成Word多级标题格式_poi设置word标题-CSDN博客 1.概述 使用jdbc查询数据库把表信息导出为word文档, 导出为word时需要下载word模板文件。 已实现数据库: KingbaseES, 实现代码: 点击跳转 2.效果图 2.1.生成word内容 所有数据库合并 数据库不合并 2.2.生成文件…

Qt中的全局函数讲解集合(全)

在头文件<QtGlobal>中包含了Qt的全局函数&#xff0c;现在就这些全局函数一一详解。 1.qAbs 原型&#xff1a; template <typename T> T qAbs(const T &t)一个用于计算绝对值的函数。它可以用于计算各种数值类型的绝对值&#xff0c;包括整数、浮点数等 示…

AI与IT协同的典型案例

简介 本篇代码示例展示了IT从业者如何与AI协同工作&#xff0c;发挥各自优势。这些案例均来自2025年的最新企业实践&#xff0c;涵盖了不同IT岗位的应用场景。 一、GitHub Copilot生成代码框架 开发工程师AI协作示例&#xff1a;利用GitHub Copilot生成代码框架&#xff0c;…

三网通电玩城平台系统结构与源码工程详解(二):Node.js 服务端核心逻辑实现

本篇文章将聚焦服务端游戏逻辑实现&#xff0c;以 Node.js Socket.io 作为主要通信与逻辑处理框架&#xff0c;展开用户登录验证、房间分配、子游戏调度与事件广播机制的剖析&#xff0c;并附上多个核心代码段。 一、服务端文件结构概览 /server/├── index.js …