吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.13-1.14

目录

  • 第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)
    • 第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)
      • 1.13 梯度检验(Gradient checking)

第二门课: 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)

第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)

1.13 梯度检验(Gradient checking)

梯度检验帮我们节省了很多时间,也多次帮我发现 backprop 实施过程中的 bug,接下来,我们看看如何利用它来调试或检验 backprop 的实施是否正确。

假设你的网络中含有下列参数, W [ 1 ] W^{[1]} W[1] b [ 1 ] b^{[1]} b[1]…… W [ l ] W^{[l]} W[l] b [ l ] b^{[l]} b[l],为了执行梯度检验,首先要做的就是,把所有参数转换成一个巨大的向量数据,你要做的就是把矩阵𝑊转换成一个向量,把所有𝑊矩阵转换成向量之后,做连接运算,得到一个巨型向量𝜃,该向量表示为参数𝜃,代价函数𝐽是所有𝑊和𝑏的函数,现在你得到了一个𝜃的代价函数𝐽(即𝐽(𝜃))。接着,你得到与𝑊和𝑏顺序相同的数据,你同样可以把 d W [ 1 ] dW^{[1]} dW[1] d b [ 1 ] db^{[1]} db[1]…… d W [ l ] dW^{[l]} dW[l] d b [ l ] db^{[l]} db[l]转换成一个新的向量,用它们来初始化大向量𝑑𝜃,它与𝜃具有相同维度。

同样的,把 d W [ 1 ] dW^{[1]} dW[1]转换成矩阵, d b [ 1 ] db^{[1]} db[1]已经是一个向量了,直到把 d W [ l ] dW^{[l]} dW[l]转换成矩阵,这样所有的𝑑𝑊都已经是矩阵,注意 d W [ 1 ] dW^{[1]} dW[1] W [ 1 ] W^{[1]} W[1]具有相同维度, d b [ 1 ] db^{[1]} db[1] b [ 1 ] b^{[1]} b[1]具有相同维度。经过相同的转换和连接运算操作之后,你可以把所有导数转换成一个大向量𝑑𝜃,它与𝜃具有相同维度,现在的问题是𝑑𝜃和代价函数𝐽的梯度或坡度有什么关系?
在这里插入图片描述
这就是实施梯度检验的过程,英语里通常简称为“grad check”,首先,我们要清楚𝐽是超参数𝜃的一个函数,你也可以将𝐽函数展开为𝐽(𝜃1, 𝜃2, 𝜃3, … … ),不论超级参数向量𝜃的维度是多少,为了实施梯度检验,你要做的就是循环执行,从而对每个𝑖也就是对每个𝜃组成元素计算𝑑𝜃approx[𝑖]的值,我使用双边误差,也就是
d θ a p p r o x [ i ] = J ( θ 1 , θ 2 , . . . . . . θ i + ε , . . . ) − J ( θ 1 , θ 2 , . . . . . . θ i − ε , . . . ) 2 ε dθ_{approx}[i] =\frac{J(θ_1,θ_2,......θ_i+ε,...) - J(θ_1,θ_2,......θ_i-ε,...)}{2ε} dθapprox[i]=2εJ(θ1,θ2,......θi+ε,...)J(θ1,θ2,......θiε,...)

只对 θ i θ_i θi增加𝜀,其它项保持不变,因为我们使用的是双边误差,对另一边做同样的操作,只不过是减去𝜀,𝜃其它项全都保持不变。
在这里插入图片描述
从上节课中我们了解到这个值( d θ a p p r o x [ i ] dθ_{approx}[i] dθapprox[i])应该逼近𝑑𝜃[𝑖]=𝜕𝐽/𝜕𝜃𝑖,𝑑𝜃[𝑖]是代价函数的偏导数,然后你需要对𝑖的每个值都执行这个运算,最后得到两个向量,得到𝑑𝜃的逼近值 d θ a p p r o x dθ_{approx} dθapprox,它与𝑑𝜃具有相同维度,它们两个与𝜃具有相同维度,你要做的就是验证这些向量是否彼此接近。

具体来说,如何定义两个向量是否真的接近彼此?我一般做下列运算,计算这两个向量的距离,𝑑𝜃approx[𝑖] − 𝑑𝜃[𝑖]的欧几里得范数,注意这里(||𝑑𝜃approx − 𝑑𝜃||2)没有平方,它是误差平方之和,然后求平方根,得到欧式距离,然后用向量长度归一化,使用向量长度的欧几里得范数。分母只是用于预防这些向量太小或太大,分母使得这个方程式变成比率,我们实际执行这个方程式,𝜀可能为 1 0 − 7 10^{−7} 107,使用这个取值范围内的𝜀,如果你发现计算方程式得到的值为 1 0 − 7 10^{−7} 107或更小,这就很好,这就意味着导数逼近很有可能是正确的,它的值非常小。

在这里插入图片描述
如果它的值在 1 0 − 5 10^{−5} 105范围内,我就要小心了,也许这个值没问题,但我会再次检查这个向量的所有项,确保没有一项误差过大,可能这里有 bug。

如果左边这个方程式结果是 1 0 − 3 10^{−3} 103,我就会担心是否存在 bug,计算结果应该比 1 0 − 3 10^{−3} 103小很多,如果比 1 0 − 3 10^{−3} 103大很多,我就会很担心,担心是否存在 bug。这时应该仔细检查所有𝜃项,看是否有一个具体的𝑖值,使得𝑑𝜃approx[𝑖]与𝑑𝜃[𝑖]大不相同,并用它来追踪一些求导计算是否正确,经过一些调试,最终结果会是这种非常小的值( 1 0 − 7 10^{−7} 107),那么,你的实施可能是正确的。

在这里插入图片描述
在实施神经网络时,我经常需要执行 foreprop 和 backprop,然后我可能发现这个梯度检验有一个相对较大的值,我会怀疑存在 bug,然后开始调试,调试,调试,调试一段时间后,我得到一个很小的梯度检验值,现在我可以很自信的说,神经网络实施是正确的。

现在你已经了解了梯度检验的工作原理,它帮助我在神经网络实施中发现了很多 bug,希望它对你也有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/7593.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IT 项目管理介绍和资料汇总

IT项目管理到底是什么?是对组织承担的任何信息技术项目的成功监督。IT项目经理负责规划、预算、执行、领导、故障排除和维护这些项目。IT项目经理可能会做的事情包括: 1、硬件安装 2、软件、网站和应用程序开发 3、网络和云计算解决方案的升级和/或推出…

非平衡数据处理-Tomek link算法介绍,代码和实战测评

作者Toby,来源公众号:Python风控模型,非平衡数据处理-Tomek link算法 概述 非平衡数据在金融风控领域、反欺诈客户识别、广告智能推荐和生物医疗中普遍存在。一般而言,不平衡数据正负样本的比例差异极大,如在Kaggle竞…

20240503安装HEVC解码器播放H265格式的8K视频

20240503安装HEVC解码器播放H265格式的8K视频 2024/5/3 9:55 缘起:由于youtube支持8K视频了,想尝尝鲜! 主摄像头当然是选择SONY的【夜摄/弱光场景】,根据优选,小米(MI)13Ultra 最佳了。 在开始播…

jenkins目录下的vue3项目——pnpm install后运行报错——奇葩问题解决

昨天到今天,同事那边遇到一个问题,就是关于vue3vite的项目,在执行了自动打包后,运行代码会提示报错的问题。 报错信息如下: 具体错误信息如下: ERROR 11:28:14 [vite] Pre-transform error: Cannot find …

深入探究TCP/IP协议

一、引言 在信息技术飞速发展的今天,网络已成为人类社会不可或缺的部分。实现网络中计算机相互通信的关键之一便是TCP/IP协议。作为互联网的基础,TCP/IP协议确保了全球范围内的数据交换和信息共享。本文将深入探讨TCP/IP协议的概念、特点、组成、相关协…

C++笔记之调用PCL库显示PCD文件的点云

C++笔记之调用PCL库显示PCD文件的点云 —— 2024-05-05 杭州 code review! 文章目录 C++笔记之调用PCL库显示PCD文件的点云1.运行2.点云pcd文件github下载地址2.main.cpp3.CMakeLists.txt1.运行 2.点云pcd文件github下载地址 https://github.com/luolaihua/point-cloud-data-…

【优选算法】——Leetcode——202—— 快乐数

目录 1.题目 2. 题⽬分析: 3.简单证明: 4. 解法(快慢指针): 算法思路: 补充知识:如何求⼀个数n每个位置上的数字的平⽅和。 总结概括 5.代码实现 1.C语言 2.C 1.题目 202. 快乐数 编写一个算法来…

STL vector详解

STL vector详解 1. 简介2. vector的内存机制3. vector 基类源码_Vector_base3.1. vector 基类成员变量3.2. vector 基类方法3.3. _Vector_base 总结 4. vector类4.1. 方法 1. 简介 本文参考vector源码,主要介绍vector的设计思路,了解一些方法的实现原理…

20240506 深度学习高级技术点

1.基于BN层剪枝 基于Batch Normalization (BN)层进行剪枝是一种常用的模型压缩方法,特别是在卷积神经网络(CNNs)中。BN层在训练期间用于加速收敛和提高模型的泛化能力,而在剪枝过程中,BN层提供的统计信息(特别是均值(mean)和方差…

HarmonyOS实战开发-如何通过BlendMode属性来实现挂件和图片的混合

介绍 本实例主要通过BlendMode属性来实现挂件和图片的混合,通过更改不同的混合参数,能够展示不同的混合效果。 效果图预览 使用说明: 1.进入页面,点击挂件区域,进行挂件和图片的混合,点击不同的挂件&…

Golang 开发实战day12 - Pointer

🏆个人专栏 🤺 leetcode 🧗 Leetcode Prime 🏇 Golang20天教程 🚴‍♂️ Java问题收集园地 🌴 成长感悟 欢迎大家观看,不执着于追求顶峰,只享受探索过程 Golang 开发实战day12 - 指针…

Python实验代码定时调起

Python代码实验调参需要等待1小时运行完成,自动将提前设置的5组参数(每组参数有8个)间隔1小时之后让Python代码再次自动依次调起运行其中的一组参数,每次跑完将实验结果写一个文件在本地存储通过邮件发送运行结果到指定QQ邮箱 im…

国家电网某地电力公司网络硬件综合监控运维项目

国家电网某地电力公司是国家电网有限公司的子公司,负责当地电网规划、建设、运营和供电服务,下属多家地市供电企业和检修公司、信息通信公司等业务支撑实施机构。 项目现状 随着公司信息化建设加速,其信息内网中存在大量物理服务器、存储设备…

Linux动态库与静态库解析

文章目录 一、引言二、C/C源文件的编译过程三、静态库1、静态库的定义和原理2、静态库的优缺点3、静态库的创建和使用a、创建静态库b、使用静态库 四、动态库1、动态库的定义和原理2、动态库的优缺点3、动态库的创建和使用示例a、创建动态库b、使用动态库 五、动静态库的比较 一…

Pytorch学习笔记——神经网络基本框架

一、神经网络是什么 神经网络在人工智能和深度学习的领域,一般称为人工神经网络,即ANN(Artificial Neural Network),是一种模仿人脑神经系统工作方式的计算模型。被广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。 二、…

套管外径测量仪 多尺寸型号 规格全可定制

套管(bushing)是一种将带电导体引入电气设备或穿过墙壁的一种绝缘装置。前者称为电器套管,后者称为穿墙套管。套管通常用在建筑地下室,是用来保护管道或者方便管道安装的铁圈。套管的分类有刚性套管、柔性防水套管、钢管套管及铁皮…

【快速幂取模】

求 a 的 b 次方对 p 取模的值&#xff0c;其中 1≤a,b,p≤109 输入 三个用空格隔开的整数a,b和p。 输出 一个整数&#xff0c;表示ab mod p的值。 样例输入 Copy 2 3 9样例输出 Copy 8 思路&#xff1a; 这里借鉴一下大佬的用例&#xff1a; #include<bits/stdc.h&…

idea提示 CreateProcess error=206, 文件名或扩展名太长有哪些具体的解决方法

背景&#xff1a; 项目启动后提示CreateProcess error206&#xff0c;通常我本地是将shorten command line改成如下就可以解决&#xff0c;但是今天遇到一个&#xff0c;无论这里怎么设置都是启动提示扩展名太长&#xff0c;经过一番处理问题终于解决&#xff0c;特此记录一下。…

面试笔记——垃圾回收

对象被垃圾回收的时机 垃圾回收主要面向的是堆中的对象。简单一句就是&#xff1a;如果一个或多个对象没有任何的引用指向它了&#xff0c;那么这个对象现在就是垃圾&#xff0c;如果定位了垃圾&#xff0c;则有可能会被垃圾回收器回收。 如果要定位什么是垃圾&#xff0c;有两…

分布式锁-快速入门

文章目录 前言一、基础概念1.1 什么是锁1.2 什么是分布式锁1.3 锁和事务的区别二、分布式锁基础理论2.1 为什么要使用分布式锁2.2 分布式锁特性2.3 分布式锁的实现方式总结前言 由于在平时的工作中,线上服务器是分布式多台部署的,经常会面临解决分布式场景下数据一致性的问题…