英伟达推出视觉语言模型:VILA

NVIDIA和MIT的研究人员推出了一种新的视觉语言模型(VLM)预训练框架,名为VILA。这个框架旨在通过有效的嵌入对齐和动态神经网络架构,改进语言模型的视觉和文本的学习能力。VILA通过在大规模数据集如Coy0-700m上进行预训练,采用基于LLaVA模型的不同预训练策略进行测试。研究人员还引入了视觉指令调整方法,利用视觉语言数据集进行基于提示的指令调整来细化模型。VILA在视觉问答基准测试中展示了显著的性能提升,例如在0KVQA和TextVQA测试中分别达到了70.7%和78.2%的准确率,同时保留了高达90%的先前学习知识,显著减少了灾难性遗忘的发生。

主要发现

1.情境学习与泛化能力:VILA通过预训练不仅提升了情境学习能力,即模型对新情境的适应性和学习能力,而且还优化了其泛化能力,使模型能在不同的视觉语言任务上展现出色的性能。2.指令微调的效果:指令微调阶段,通过将文本指令重新混合到图像-文本数据中,VLA能够修复在处理纯文本任务上的性能退化,同时提升视觉语言任务的准确率。3.视觉问答任务上的表现:VILA模型在视觉问答(VQA)和文本视觉问答(TextVQA)等任务上表现出色,这表明其预训练和微调策略有效地提升了模型的跨模态理解能力。4.减少灾难性遗忘:VILA成功地减少了在学习新任务时对旧知识的遗忘,这是通过动态调整网络结构和在训练中采用特定策略实现的。

VILA模型主要功能

多图像推:VILA模型可以处理并理解多个图像之间的关系,执行复杂的图像间推理任务。这使得模型能够识别和解释多个视觉输入中的模式和联系,如确定图像集中出现的共同对象或主题。
902a939e792b3dc86654546d065fbe1b.jpeg
增强的情境学习能力:VILA通过预训练改进了情境学习能力,这是模型能够根据给定上下文进行学习和适应的能力。这使得VILA在处理如图像描述、问答等需要理解具体情境的任务时表现出色。
9884afaadd50a44ca08f14187a98366d.jpeg
更好的世界知识:预训练还帮助VILA模型获得了更广泛的世界知识,使其能够更有效地处理和理解涉及复杂世界信息的查询,如识别著名地标和理解文化特定的元素。
35327ab38ff1c846eef54ebbe3b3f7d2.jpeg
文本和视觉的深度融合:VILA在模型的不同层次上融合了文本和视觉信息,实现了更深层次的跨模态信息整合。这包括在预训练阶段使用交错的视觉-语言数据,以及在指令微调阶段整合文本指令和视觉数据。
4e5603b2ebfda32d6b87b9458fc43215.jpeg
适用于多种视觉语言任务:VILA模型的设计和训练方法使其适用于广泛的视觉语言任务,如视觉问答(VQA)、图像描述生成、图像基础的搜索任务等。模型的多功能性也支持了在少样本和零样本设置下的高性能。

模型架构


63bbc6d9456071a06c569a84f6d41f91.jpeg

核心特征

1.多模态预训练:VLA模型利用视觉和文本数据的联合预训练来提升模型在理解和生成基于图像的语言描述的能力。这种预训练不仅包括图像和对应文本标签的匹配,还包括复杂的场景解释和问答任务。2.动态注意力机制:在模型的架构中,动态注意力机制允许模型根据任务需求调整对视觉和文本输入的关注程度。这种灵活的注意力调整对于处理复杂的视觉语言交互尤其关键。3.交错式训练方法:为了维持模型在处理纯文本任务的能力,同时增强对视觉数据的处理效率,VILA采用了交错式训练方法,轮流对视觉语言数据和纯文本数据进行训练。4.指令微调:在预训练后,VLA通过针对具体视觉语言任务的指令微调进一步优化性能,如视觉问答和图像描述生成等任务。

组成部分

1.视觉处理单元:VLA模型包括一个专门用于处理图像输入的视觉处理单元,通常基于最新的视觉转换器(如ViT)模型,这些模型被训练用以提取图像中的关键特征和语义信息。2.语言处理单元:语言处理部分基于先进的语言模型,如GPT或BERT,这些模型专门优化用于理解和生成自然语言。3.融合层:融合层是VILA模型的核心,它负责整合来自视觉处理单元和语言处理单元的信息,生成统一的、多模态的表示,这对于执行跨模态任务至关重要4.优化策略:包括技术如弹性权重共享和梯度截断,这些策略帮助模型在训练过程中保持稳定,并优化跨模态信息的流动。

训练方法

VILA(VisualLanguage Model)的性能提升主要依赖于一系列创新的预训练方法和架构设计。这些方法和设计特别针对提升视觉语言模型处理跨模态任务的能力,从而在复杂的视觉语言处理任务上达到更好的表现。以下是VILA使用的主要方法和技术细节:1.多模态预训练VILA利用了多模态数据的预训练策略,这是为了增强模型在处理视觉和文本输入时的一致性和效率。具体方法包括:

  • 图像-文本配对:通过大量的图像和对应描述的配对数据进行预训练,让模型学习如何埋解和关联视觉内容与文本信息。
  • 交错视觉-文本数据:在预训练阶段交替使用纯文本数据和视觉-文本数据,这样可以维护并强化模型在处理纯文本内容上的能力,同时增强其对视觉信息的处理能力。

2.动态网络架构VILA的网络架构设计允许模型根据任务的需求动态调整,这对于提高模型的灵活性和任务适应性非常关键:

  • 动态注意力机制:通过调整注意力机制的聚焦点,模型可以更有效地处理与任务最相关的信息,无论是图像中的细节还是文本中的关键词。
  • 嵌入对齐:优化了文本和视觉嵌入的对齐方式,确保两种模态的信息在内部表示上高度一致,这对于后续的信息融合至关重要。

3.指令微调通过在微调阶段使用指令微调的方法,VILA能够更精准地适应和执行具体的视觉语言任务:

  • 任务特定的指令:在微调过程中,向模型输入具体的任务指令(如“解释这幅图片"或”回答关于这幅图片的问题”),这有助于模型更好地理解和专注于任务需求。
  • 视觉-文本联合微调:联合微调图像和文本处理模块,确保两者在执行具体任务时能有效协作。

4.减少灾难性遗忘在训练和微调过程中,VILA采取措施减少所谓的灾难性遗忘(即在学习新任务时忘记旧知识的现象):

  • 增量学习:采用增量学习方法逐步引入新的任务和数据,避免在快速吸收新知识的同时丢失旧的学习成果。
  • 正则化技术:使用正则化技术保持模型在新旧任务之间的平衡,防止过度适应新数据而导致对以前任务的性能下降。

评估结果

VILA在多个视觉语言基准测试中展现了卓越的性能,尤其是在视觉问答和文本视觉问答任务上。这一结果表明,VILA模型的设计和训练策略有效地提升了其在解析和生成基于图像内容的复杂问题答案的能力。

6b2ed059c816634d9b80ad5e2adb6ba7.jpeg
数据集和训练阶段:使用包括图像-文本配对和交错图像-文本数据集的大规模数据集进行预训练。实验评估了模型在视觉问答(VQA)和文本视觉问答(TextVQA)等视觉语言任务上的表现。指令微调:通过视觉语言指令数据集进行指令微调,改善了指导微调数据集的多样性和质量,显著提升了下游评估指标。1.视觉问答(VQA)任务

  • 性能提升:在标准的视觉问答数据集上,VLA显示了优越的性能。具体地,它在OKVQA测试中达到了70.7%的准确率,这是一个涉及开放式问题的复杂数据集,要求模型理解并回答基于图像的各种问题。
  • 与其他模型比较:与其他先进的视觉语言模型相比:VILA在处理更复杂、更抽象的查询时示出更高的准确性和更好的理解深度。


55bc55dcc7b76ceeb3e6f2ab6ef59813.jpeg

高性价比GPU资源:https://www.ucloud.cn/site/active/gpu.html?ytag=gpu_wenzhang_tongyong_shemei

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/7157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VBA编程之条件语句

上一篇我们讲述了条件语句以及分支。文章的最后用到了逻辑运算符“And“那么今天我们来聊一聊逻辑运算符和Select……Case结构。 在学习前我们先来了解一下,在生活中我们经常说”这个包括那个“,”你或者他“,”不是“等等。而这里”包括“和…

esp32+mqtt协议+paltformio+vscode+微信小程序+温湿度检测

花费两天时间完成了这个项目(不完全是,属于是在resnet模型训练和温湿度检测两头跑......模型跑不出来,又是第一次从头到尾独立玩硬件,属于是焦头烂额了......,完成这个项目后,我的第一反应是写个csdn&#…

[每日AI·0506]巴菲特谈 AI,李飞飞创业,苹果或将推出 AI 功能,ChatGPT 版搜索引擎

AI 资讯 苹果或将推出 AI 功能,随 iPhone 发布2024 年巴菲特股东大会,巴菲特将 AI 类比为核技术 巴菲特股东大会 5 万字实录消息称 OpenAI 将于 5 月 9 日发布 ChatGPT 版搜索引擎路透社消息,斯坦福大学 AI 领军人物李飞飞打造“空间智能”创…

论文辅助笔记:Tempo 之 model.py

0 导入库 import math from dataclasses import dataclass, asdictimport torch import torch.nn as nnfrom src.modules.transformer import Block from src.modules.prompt import Prompt from src.modules.utils import (FlattenHead,PoolingHead,RevIN, )1TEMPOConfig 1.…

【C++】 认识多态 + 多态的构成条件详细讲解

前言 C 目录 1. 多态的概念2 多态的定义及实现2 .1 虚函数:2 .2 虚函数的重写:2 .2.1 虚函数重写的两个例外: 2 .3 多态的两个条件(重点)2 .4 析构函数为啥写成虚函数 3 新增的两个关键字3.1 final的使用:3…

09_电子设计教程基础篇(电阻)

文章目录 前言一、电阻原理二、电阻种类1.固定电阻1、材料工艺1、线绕电阻2、非线绕电阻1、实心电阻1、有机实心电阻2、无机实心电阻 2、薄膜电阻(常用)1、碳膜电阻2、合成碳膜电阻3、金属膜电阻4、金属氧化膜电阻5、玻璃釉膜电阻 3、厚膜电阻&#xff0…

vue2实现生成二维码和复制保存图片功能(复制的同时会给图片加文字)

<template><divstyle"display: flex;justify-content: center;align-items: center;width: 100vw;height: 100vh;"><div><!-- 生成二维码按钮和输入二维码的输入框 --><input v-model"url" placeholder"输入链接" ty…

智能家居1 -- 实现语音模块

项目整体框架: 监听线程4&#xff1a; 1. 语音监听线程:用于监听语音指令&#xff0c; 当有语音指令过来后&#xff0c; 通过消息队列的方式给消息处理线程发送指令 2. 网络监听线程&#xff1a;用于监听网络指令&#xff0c;当有网络指令过来后&#xff0c; 通过消息队列的方…

SpringSecurity6 学习

学习介绍 网上关于SpringSecurity的教程大部分都停留在6以前的版本 但是&#xff0c;SpringSecurity6.x版本后的内容进行大量的整改&#xff0c;网上的教程已经不能够满足 最新的版本使用。这里我查看了很多教程 发现一个宝藏课程&#xff0c;并且博主也出了一个关于SpringSec…

【python】条件语句与循环语句

目录 一.条件语句 1.定义 2.条件语句格式 &#xff08;1&#xff09;if &#xff08;2&#xff09;if-else &#xff08;3&#xff09;elif功能 &#xff08;4&#xff09;if嵌套使用 3.猜拳游戏 二.循环语句 1. while循环 2.while嵌套 3.for循环 4.break和conti…

被问了n遍的小程序地理位置权限开通方法

小程序地理位置接口有什么功能&#xff1f; 在平时我们在开发小程序时&#xff0c;难免会需要用到用户的地理位置信息的功能&#xff0c;小程序开发者开放平台新规要求如果没有申请开通微信小程序地理位置接口( getLocation )&#xff0c;但是在代码中却使用到了相关接口&#…

人工智能概述与入门基础简述

人工智能&#xff08;AI&#xff09;是计算机科学的一个分支&#xff0c;它致力于创建能够执行通常需要人类智能的任务的机器。这篇科普文章将全面介绍人工智能的基本概念、发展历程、主要技术、实际应用以及如何入门这一领域。 一、人工智能的定义与发展历程 人工智能的概念…

springboot版本升级,及解决springsecurity漏洞问题

背景&#xff1a; 项目中要解决 Spring Security RegexRequestMatcher 认证绕过漏洞&#xff08;CVE-2022-22978&#xff09; 漏洞问题&#xff0c;并且需要将项目的版本整体升级到boot版本2.1.7&#xff0c;升级改造过程非常的痛苦&#xff0c;一方面对整个框架的代码不是很熟…

六淳科技IPO终止背后:十分着急上市,大额分红,实控人买豪宅

华西证券被暂停保荐业务资格6个月的影响力逐渐显现。 近日&#xff0c;深圳证券交易所披露的信息显示&#xff0c;东莞六淳智能科技股份有限公司&#xff08;下称“六淳科技”&#xff09;及其保荐人撤回上市申请材料。因此&#xff0c;深圳证券交易所决定终止对其首次公开发行…

LangChain 概念篇(喂饭级)

LangChain 介绍 LangChain 是一个用于开发由语言模型驱动的应用程序的框架。 LangChain 框架的设计目标 支持应用程序让其不仅会通过 API 调用语言模型&#xff0c;而且还会数据感知&#xff08;将语言模型连接到其他数据源&#xff09;&#xff0c;Be agentic&#xff08;允…

专注 APT 攻击与防御—基于UDP发现内网存活主机

UDP简介&#xff1a; UDP&#xff08;User Datagram Protocol&#xff09;是一种无连接的协议&#xff0c;在第四层-传输层&#xff0c;处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点&#xff0c;也就是说&#xff0c;当报文发送之后&#xf…

spring高级篇(十)

1、内嵌tomcat boot框架是默认内嵌tomcat的&#xff0c;不需要手动安装和配置外部的 Servlet 容器。 简单的介绍一下tomcat服务器的构成&#xff1a; Catalina&#xff1a; Catalina 是 Tomcat 的核心组件&#xff0c;负责处理 HTTP 请求、响应以及管理 Servlet 生命周期。它包…

OpenHarmony实战开发-应用侧调用前端页面函数

应用侧可以通过runJavaScript()方法调用前端页面的JavaScript相关函数。 在下面的示例中&#xff0c;点击应用侧的“runJavaScript”按钮时&#xff0c;来触发前端页面的htmlTest()方法。 前端页面代码。 <!-- index.html --> <!DOCTYPE html> <html> <…

图片浏览器-PicView

一、前言 PicView 是一款适用于 Windows 10 或 11 的快速高效的图像查看器&#xff0c;配备了干净简洁的用户界面&#xff0c;可以在不需要时方便地隐藏。 二、支持类型 它支持广泛的图像文件类型&#xff0c;包括&#xff1a;WEBP、GIF、SVG、PNG、JXL、HEIC、PSD 三、软件特…

红日靶场ATTCK 1通关攻略

环境 拓扑图 VM1 web服务器 win7&#xff08;192.168.22.129&#xff0c;10.10.10.140&#xff09; VM2 win2003&#xff08;10.10.10.135&#xff09; VM3 DC win2008&#xff08;10.10.10.138&#xff09; 环境搭建 win7&#xff1a; 设置内网两张网卡&#xff0c;开启…