网站建设教程视频教程/手机优化大师下载

网站建设教程视频教程,手机优化大师下载,网站开发公司企业官网,可以做电算化的网站目录 一. 简介: 1. 为什么需要请求日志 二. 日志模块组成 1. 对应日志表创建(包含日志记录的关键字段) 2. 编写日志记录静态方法 3. 在Flask中捕获请求日志 4. 捕获异常并记录错误日志 5. 编写日志接口数据展示 6. 写入数据展…

目录

一. 简介:

1. 为什么需要请求日志

二.  日志模块组成

1.  对应日志表创建(包含日志记录的关键字段)

2.  编写日志记录静态方法

3.  在Flask中捕获请求日志

4.  捕获异常并记录错误日志

5.  编写日志接口数据展示

6.  写入数据展示

三. 日志信息格式处理问题

1. 如何处理流式响应(Passthrough)

2. 如何记录响应数据(如JSON响应)

3. 总结与优化建议

四 . 结尾


一. 简介:

在Flask应用中,日志记录是重要的功能之一,它可以帮助开发人员跟踪请求的处理情况,快速定位错误,并且有助于应用的监控与调试。本文将介绍如何在Flask应用中实现请求日志记录,包括如何记录请求的各种信息(如请求数据、响应数据、错误信息等)并将其保存到数据库中。我们还会演示如何捕获不同级别的日志(信息级别、错误级别),并讨论如何处理复杂的响应数据(如流式响应)。


1. 为什么需要请求日志

日志记录可以帮助开发人员和运维团队了解应用的行为和状态,尤其是在生产环境中。通过记录每次请求的详细信息,开发人员能够:

  • 跟踪应用性能。
  • 快速定位和调试错误。
  • 为监控和安全审计提供数据支持。

例如,在出现错误时,记录详细的堆栈信息、请求的URL、请求参数和响应数据,能够帮助你迅速分析问题并进行修复。

二.  日志模块组成

  1.  对应日志表创建(包含日志记录的关键字段

# 日志表
class Log(db.Model,TimestampMixin):"""日志表"""__tablename__ = 't_logs'__table_args__ = {'mysql_engine': 'InnoDB','comment': '日志表'}id = db.Column(db.Integer, primary_key=True, autoincrement=True,comment='id')user_id = db.Column(db.Integer,comment='用户ID')  # 用户IDip_address = db.Column(db.String(50),comment='ip地址')  # ip地址level = db.Column(db.String(50),comment='日志级别')  # 日志级别message = db.Column(db.Text,comment='日志内容')  # 日志内容module = db.Column(db.String(100),comment='模块名称')  # 模块名称method = db.Column(db.String(50),comment='方法名称')  # 方法名称url = db.Column(db.String(255),comment='请求的URL')  # 请求的URLrequest_data = db.Column(db.Text,comment='请求数据')  # 请求数据response_data = db.Column(db.Text,comment='响应数据')  # 响应数据error_code = db.Column(db.String(50),comment='错误代码')  # 错误代码stack_trace = db.Column(db.Text,comment='堆栈追踪')  # 堆栈追踪hostname = db.Column(db.String(100),comment='服务器主机名')  # 服务器主机名context = db.Column(db.String(255),comment='上下文信息')  # 上下文信息def __repr__(self):return f"<ErrorLog(id={self.id}, ip_address={self.ip_address}, level={self.level}, message={self.message})>"

2.  编写日志记录静态方法

    # db.session 进行数据提交等操作@staticmethoddef log_message(session, exception=None, user_id=None,error_code=None,level=None, message=None, **kwargs):try:# 获取请求数据request_data=''if request.method == 'GET':request_data = str(dict(request.args))  # 直接获取查询参数elif request.method == 'POST':if request.is_json:request_data = str(request.get_json())  # 获取 JSON 数据else:request_data = str(request.form)  # 获取表单数据# 获取请求的其他信息ip_address = request.remote_addr  # 获取客户端IP地址url = request.url  # 获取请求的URLresponse_data = str(kwargs.get('response_data', ''))  # 获取响应数据stack_trace = traceback.format_exc() if exception else ""  # 获取堆栈追踪hostname = socket.gethostname()  # 获取服务器主机名context = kwargs.get('context', 'Production')  # 上下文(默认生产环境)if not message:message = str(exception) if exception else "Unknown error"# 检查错误响应数据并跳过日志记录try:# 将响应数据从字符串转换为字典response_dict = json.loads(response_data)if isinstance(response_dict, dict) and response_dict.get("message") == "内部服务器错误":return  # 跳过日志记录except json.JSONDecodeError:# 如果无法解析 JSON,则跳过判断pass# print(user_id)# 创建并保存日志条目log = Log(user_id=user_id if user_id else 0,level=level,message=message,ip_address=ip_address,url=url,request_data=request_data,response_data=response_data,stack_trace=stack_trace,hostname=hostname,context=context,method=request.method,module=request.blueprint,error_code=error_code,)# 保存日志条目db.session.add(log)db.session.commit()except Exception as e:print(e)pass

3. 在Flask中捕获请求日志

在Flask中,我们可以通过使用 after_request 钩子来捕获请求信息。这个钩子在每次请求处理完毕后执行,适合用于记录日志。示例如下:

# 请求成功日志记录
@app.after_request
def after_request(response):# 获取当前用户信息user_id = Nonelevel = "INFO"  # 你可以根据需要动态设置日志级别,如根据响应状态码判断message = "请求成功!"  # 请求成功的默认信息# 记录日志try:current_user = get_jwt_identity()# 获取用户信息(从数据库中获取用户信息做对比)user_info = db.session.query(User).filter(User.username == current_user).first()user_id = user_info.idexcept RuntimeError as e:# 捕获没有 JWT 时抛出的 RuntimeError 异常# 不做任何事情,直接跳过日志记录passexcept Exception as e:print(e)pass# 如果响应处于 passthrough 模式,则不能直接访问 response.dataif not response.direct_passthrough:# 正常情况下获取响应数据并转化为文本response_data = response.get_data(as_text=True)else:# 如果是 passthrough 模式,说明是流式响应或直接传递模式response_data = "{}"  # 或者根据需求设置适当的默认值if user_id:Log.log_message(db.session,user_id=user_id if user_id else 0,level=level,message=message,response_data=response_data,context="Production",  # 可选的环境信息error_code=200,)return response

在这个例子中,我们通过 after_request 钩子来处理每个请求后执行的日志记录。获取响应数据时,根据响应的类型决定是否直接获取 response.data

4. 捕获异常并记录错误日志

在实际开发中,应用程序往往会遇到异常。为了保证日志的完整性,我们可以捕获异常并将其记录下来。特别是对于HTTP 500类错误,应该记录详细的堆栈信息。

# 异常处理日志记录
@app.errorhandler(Exception)
def handle_exception(e):# 捕获所有异常,记录日志level = "ERROR"message = str(e)  # 将异常转换为字符串stack_trace = traceback.format_exc()  # 获取堆栈追踪# 获取当前用户信息user_id = Nonetry:current_user = get_jwt_identity()user_info = db.session.query(User).filter(User.username == current_user).first()user_id = user_info.idexcept RuntimeError:# 如果没有 JWT 则不记录用户IDpassif user_id:# 记录异常日志Log.log_message(db.session,exception=e,user_id=user_id,level=level,message='请求失败!',stack_trace=stack_trace,context="Production",error_code=500,)print(message)# 返回通用的500错误响应return {"message": "内部服务器错误"}, 500

在这个例子中,我们捕获了通用的异常,并将错误信息、堆栈追踪以及其他日志信息保存到数据库。

5. 编写日志接口数据展示

from flask import Response, jsonify, Flask, request, Blueprint,url_for
from configs import *
from modules.Tables import *
from sqlalchemy import func# 创建蓝图,对应的register目录(激活操作视图)
log_view = Blueprint('log_view', __name__)# 日志信息展示
@log_view.route('/log_data', methods=['GET'])
@jwt_required()
def log_data():# 获取分页参数page = request.args.get('page', default=1, type=int)  # 当前页码per_page = request.args.get('per_page', default=15, type=int)  # 每页显示条目数量level = request.args.get('level')  # 日志等级# 定义筛选列表filters = []# 当筛选条件存在时添加到列表if level:filters.append(Log.level == level)# 构建查询条件query = and_(*filters) if filters else True  # 如果 filters 为空,默认条件为 True# 查询主区域点并进行分页pagination = db.session.query(Log.id,Log.user_id,Log.ip_address, Log.level,Log.message,Log.module,Log.method,Log.url,Log.request_data, Log.response_data,Log.error_code, Log.stack_trace,Log.hostname,Log.context,Log.created_at).filter(query).paginate(page=page, per_page=per_page, error_out=False)# 获取分页后的数据data_list = [{'id': item.id,'user_id': item.user_id,'ip_address': item.ip_address,'level': item.level,'message': item.message,'module': item.module,'method': item.method,'url': item.url,'request_data': item.request_data if item.response_data else item.stack_trace,'response_data': item.response_data,'error_code': item.error_code,# 'stack_trace':item.stack_trace,'hostname':item.hostname,'context':item.context,'created_at': format_datetime(item.created_at),}for item in pagination.items]# 构造返回结果,包括分页信息response = {'code': 200,'data': data_list,'pagination': {'current_page': pagination.page,'total_pages': pagination.pages,'total_items': pagination.total,'per_page': pagination.per_page}}return jsonify({'code':200,'data':response})

 6. 写入数据展示

三. 日志信息格式处理问题

1. 如何处理流式响应(Passthrough)

Flask中的流式响应(passthrough)不允许直接访问 response.data,因此需要特别处理。通过 response.get_data(as_text=True) 方法,我们可以安全地获取响应数据并将其存储到日志中。如果响应不可序列化(如流式数据),可以跳过或记录默认值。

if not response.direct_passthrough:response_data = response.get_data(as_text=True)
else:response_data = "Non-serializable response"

2. 如何记录响应数据(如JSON响应)

对于返回JSON数据的响应,我们可以通过 response.get_data(as_text=True) 获取响应体的内容。这种方式适用于大多数JSON响应,确保我们可以将响应内容记录到日志中。

例如,在捕获日志时,我们可以如下处理响应数据:

response_data = response.get_data(as_text=True)

对于非JSON响应,使用 str() 也能保证将其转化为可记录的格式。

3. 总结与优化建议

  • 在Flask应用中,通过 @app.after_request 钩子可以轻松地记录每次请求的日志。
  • 根据不同的请求方法(GET/POST)和响应类型(JSON、流式数据等),动态调整日志记录方式。
  • 使用 try-except 语句捕获异常,并记录详细的错误信息以帮助后期的调试和维护。

通过这些方法,我们可以高效、全面地记录Flask应用中的日志,并为后期的性能优化、故障排查提供支持。

四 . 结尾

日志记录是开发和运维过程中不可或缺的一部分,它能帮助我们及时发现问题并做出调整。通过本文介绍的日志记录方式,我们能够方便地捕获请求和响应的详细信息,同时处理各种异常和特殊情况。希望这篇文章能够帮助你更好地理解并实现Flask中的日志记录。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70574.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RoCBert:具有多模态对比预训练的健壮中文BERT

摘要 大规模预训练语言模型在自然语言处理&#xff08;NLP&#xff09;任务上取得了最新的最优结果&#xff08;SOTA&#xff09;。然而&#xff0c;这些模型容易受到对抗攻击的影响&#xff0c;尤其是对于表意文字语言&#xff08;如中文&#xff09;。 在本研究中&#xff0…

Jetpack Architecture系列教程之(三)——ViewModel控制器

目录 介绍 如何使用 添加依赖 构建ViewModel 分析ViewModel ViewModel生命周期 ViewModel加载原理 介绍 ViewModel 的出现是为了解决数据因Android UI控制器在生命周期活动中造成数据丢失的问题。 在一般情况下&#xff0c;页面数据丢失&#xff08;转屏、闪退等生命周期…

在低功耗MCU上实现人工智能和机器学习

作者&#xff1a;Silicon Labs 人工智能&#xff08;AI&#xff09;和机器学习&#xff08;ML&#xff09;技术不仅正在快速发展&#xff0c;还逐渐被创新性地应用于低功耗的微控制器&#xff08;MCU&#xff09;中&#xff0c;从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式…

rpc到自己java实现rpc调用再到rpc框架设计

目录 rpc(Remote Procedure Call)rpc一般架构为什么要引入rpc自己实现rpc调用1. 新建一个maven项目&#xff0c;加入hessian依赖2. 服务端3. Stub代理4. 客户端测试输出5. rpc程序分析附 请求参数和序列化程序 6. 总结 回顾RPCRPC 序列化协议RPC 网络协议注册中心的引入dubbo框…

【STM32 USB】USB CDC类

简介 USB CDC&#xff08;communication device class&#xff09;类是usb2.0标准下的一个子类&#xff0c;定义了通信相关设备的抽象集合。usb2.0标准下定义了很多子类&#xff0c;有音频类&#xff0c;CDC类&#xff0c;HID类&#xff0c;打印&#xff0c;大容量存储类&…

如何修改Windows系统Ollama模型存储位置

默认情况下&#xff0c;Ollama 模型会存储在 C 盘用户目录下的 .ollama/models 文件夹中&#xff0c;这会占用大量 C 盘空间&#xff0c;增加C盘“爆红”的几率。所以&#xff0c;我们就需要修改Ollama的模型存储位置 Ollama提供了一个环境变量参数可以修改Ollama的默认存在位…

Codes 开源免费研发项目管理平台 2025年第一个大版本3.0.0 版本发布及创新的轻IPD实现

Codes 简介 Codes 是国内首款重新定义 SaaS 模式的开源项目管理平台&#xff0c;支持云端认证、本地部署、全部功能开放&#xff0c;并且对 30 人以下团队免费。它通过创新的方式简化研发协同工作&#xff0c;使敏捷开发更易于实施。并提供低成本的敏捷开发解决方案&#xff0…

uniapp 网络请求封装(uni.request 与 uView-Plus)

一、背景 在开发项目中&#xff0c;需要经常与后端服务器进行交互&#xff1b;为了提高开发效率和代码维护性&#xff0c;以及降低重复性代码&#xff0c;便对网络请求进行封装统一管理。 二、创建环境文件 2.1、根目录新建utils文件夹&#xff0c;utils文件夹内新建env.js文…

ESP32-S3 实战指南:BOOT-KEY 按键驱动开发全解析

一、基础知识 本篇我们使用 BOOT 按键来学习一下 GPIO 功能&#xff0c;首先补充一下相关术语介绍。 1、GPIO&#xff08;General Purpose Input/Output&#xff09; GPIO 是微控制器上的通用引脚&#xff0c;既可以作为输入&#xff08;读取外部信号&#xff09;&#xff0…

初学者如何设置以及使用富文本编辑器[eclipse版]

手把手教你设置富文本编辑器 参考来源&#xff1a;UEditor Docs 初学者按我的步骤来就可以啦 一、设置ueditor编辑器 1.提取文件[文章最底部有链接提取方式] 2.解压文件并放到自己项目中&#xff0c;在WebContent目录下&#xff1a; 3. 修改jar包位置路径 到--> 注意&a…

25轻化工程研究生复试面试问题汇总 轻化工程专业知识问题很全! 轻化工程复试全流程攻略 轻化工程考研复试真题汇总

轻化工程复试心里没谱&#xff1f;学姐带你玩转面试准备&#xff01; 是不是总觉得老师会问些刁钻问题&#xff1f;别焦虑&#xff01;其实轻化工程复试套路就那些&#xff0c;看完这篇攻略直接掌握复试通关密码&#xff01;文中有重点面试题可直接背~ 目录 一、这些行为赶紧避…

企业数据集成:实现高效调拨出库自动化

调拨出库对接调出单-v&#xff1a;旺店通企业奇门数据集成到用友BIP 在企业信息化管理中&#xff0c;数据的高效流转和准确对接是实现业务流程自动化的关键。本文将分享一个实际案例&#xff0c;展示如何通过轻易云数据集成平台&#xff0c;将旺店通企业奇门的数据无缝集成到用…

如何调整CAN位宽容忍度?

CAN位宽容忍度是指在控制器局域网络&#xff08;CAN, Controller Area Network&#xff09;中允许时钟同步的误差范围。这是CAN网络正常通信时的关键因素之一&#xff0c;因为CAN协议依赖位同步来确保多个节点在总线上正确解码数据。CAN位宽容忍度确保节点之间由于时钟偏差或抖…

Django-Vue 学习-VUE

主组件中有多个Vue组件 是指在Vue.js框架中&#xff0c;主组件是一个父组件&#xff0c;它包含了多个子组件&#xff08;Vue组件&#xff09;。这种组件嵌套的方式可以用于构建复杂的前端应用程序&#xff0c;通过拆分功能和视图&#xff0c;使代码更加模块化、可复用和易于维…

MySql数据库运维学习笔记

数据库运维常识 DQL、DML、DCL 和 DDL 是 SQL&#xff08;结构化查询语言&#xff09;中的四个重要类别&#xff0c;它们分别用于不同类型的数据库操作&#xff0c;下面为你简单明了地解释这四类语句&#xff1a; 1. DQL&#xff08;数据查询语言&#xff0c;Data Query Langu…

如何为自己的 PDF 文件添加密码?在线加密 PDF 文件其实更简单

随着信息泄露和数据安全问题的日益突出&#xff0c;保护敏感信息变得尤为重要。加密 PDF 文件是一种有效的手段&#xff0c;可以确保只有授权用户才能访问或修改文档内容。本文将详细介绍如何使用 CleverPDF 在线工具为你的 PDF 文件添加密码保护&#xff0c;确保其安全性。 为…

UEFI Spec 学习笔记---9 - Protocols — EFI Loaded Image

本节定义EFI_LOADED_IMAGE_PROTOCOL和 EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL。这些协议分别描述了已加载到内存中的映像&#xff0c;并指定了PE/COFF映像通过EFI引导服务LoadImage()加载 时使用的设备路径。这些描述包括 load image 的源、映像在内存中的当前位置、为image分…

pycharm中配置PyQt6详细教程

PyQt6 是 Qt 框架的 Python 绑定库,基于 Qt 6 开发,专为创建跨平台图形用户界面(GUI)应用程序设计。 本章教程,主要记录在pycharm中配置使用PyQt6的流程。 一、安装基础环境 在此之前,你需要提前安装好Python解释器,推荐使用anaconda创建虚拟环境。 conda create -n pyt…

Java+SpringBoot+Vue+数据可视化的综合健身管理平台(程序+论文+讲解+安装+调试+售后)

感兴趣的可以先收藏起来&#xff0c;还有大家在毕设选题&#xff0c;项目以及论文编写等相关问题都可以给我留言咨询&#xff0c;我会一一回复&#xff0c;希望帮助更多的人。 系统介绍 在当今社会&#xff0c;随着人们生活水平的不断提高和健康意识的日益增强&#xff0c;健…

【从0做项目】Java音缘心动(2)———登录、统一返回设计

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;登录模块设计 1&#xff1a;实体类 2&#xff1a;登录的请求和响应设计 二&#xff…