承德网站制作/东莞公司网上推广

承德网站制作,东莞公司网上推广,软件开发培训机构电话,邯郸单位网站建设公式介绍 在【CS285】中提到了高斯策略对数概率公式的公式如下: log ⁡ π θ ( a t ∣ s t ) − 1 2 ∥ f ( s t ) − a t ∥ Σ 2 const \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) -\frac{1}{2} \left\| f(\mathbf{s}_t) - \mathbf{a}_t \right\|_{\S…

公式介绍

在【CS285】中提到了高斯策略对数概率公式的公式如下:
log ⁡ π θ ( a t ∣ s t ) = − 1 2 ∥ f ( s t ) − a t ∥ Σ 2 + const \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \left\| f(\mathbf{s}_t) - \mathbf{a}_t \right\|_{\Sigma}^2 + \text{const} logπθ(atst)=21f(st)atΣ2+const

符号说明

PDF:Probability Density Function,概率密度函数

推导说明(from DeepSeek-R1-web)

1. 多元高斯分布的概率密度函数

设策略 π θ ( a t ∣ s t ) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) πθ(atst)服从均值为 μ = f ( s t ) \mu= f(\mathbf{s}_t) μ=f(st)、协方差矩阵为 Σ \Sigma Σ的多元高斯分布,其PDF为:
π θ ( a t ∣ s t ) = 1 ( 2 π ) d ∣ Σ ∣ exp ⁡ ( − 1 2 ( a t − f ( s t ) ) T Σ − 1 ( a t − f ( s t ) ) ) \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = \frac{1}{\sqrt{(2\pi)^{d} |\Sigma|}} \exp\left( -\frac{1}{2} (\mathbf{a}_t - f(\mathbf{s}_t))^T \Sigma^{-1} (\mathbf{a}_t - f(\mathbf{s}_t)) \right) πθ(atst)=(2π)d∣Σ∣ 1exp(21(atf(st))TΣ1(atf(st)))
其中 d d d是动作 a t \mathbf{a}_t at的维度。

2. 对PDF取对数

对上述公式取自然对数,得到对数概率:
log ⁡ π θ ( a t ∣ s t ) = − 1 2 ( a t − f ( s t ) ) T Σ − 1 ( a t − f ( s t ) ) − d 2 log ⁡ ( 2 π ) − 1 2 log ⁡ ∣ Σ ∣ \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} (\mathbf{a}_t - f(\mathbf{s}_t))^T \Sigma^{-1} (\mathbf{a}_t - f(\mathbf{s}_t)) - \frac{d}{2} \log(2\pi) - \frac{1}{2} \log|\Sigma| logπθ(atst)=21(atf(st))TΣ1(atf(st))2dlog(2π)21log∣Σ∣

3. 简化与假设

在强化学习中,通常假设:

  1. 协方差矩阵 Σ \Sigma Σ 是固定的(例如,设为对角矩阵或常数矩阵),或者与参数 θ \theta θ 无关。
  2. 常数项对梯度更新无影响:在对策略梯度进行优化时,与 θ \theta θ 无关的项在求导后会消失,因此可以合并为常数。

基于上述假设,将对数概率中的常数项合并:
const = − d 2 log ⁡ ( 2 π ) − 1 2 log ⁡ ∣ Σ ∣ \text{const} = -\frac{d}{2} \log(2\pi) - \frac{1}{2} \log|\Sigma| const=2dlog(2π)21log∣Σ∣

4. 引入马氏距离符号

定义马氏距离(Mahalanobis distance)为:
∥ a t − f ( s t ) ∥ Σ 2 = ( a t − f ( s t ) ) T Σ − 1 ( a t − f ( s t ) ) \left\| \mathbf{a}_t - f(\mathbf{s}_t) \right\|_{\Sigma}^2 = (\mathbf{a}_t - f(\mathbf{s}_t))^T \Sigma^{-1} (\mathbf{a}_t - f(\mathbf{s}_t)) atf(st)Σ2=(atf(st))TΣ1(atf(st))

代入对数概率公式,得到:
log ⁡ π θ ( a t ∣ s t ) = − 1 2 ∥ f ( s t ) − a t ∥ Σ 2 + const \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \left\| f(\mathbf{s}_t) - \mathbf{a}_t \right\|_{\Sigma}^2 + \text{const} logπθ(atst)=21f(st)atΣ2+const


最终公式

课程中给出的公式正是上述结果,其中:

  • f ( s t ) f(\mathbf{s}_t) f(st) 是由参数 θ \theta θ 确定的均值函数(例如神经网络)。
  • Σ \Sigma Σ 是固定的协方差矩阵,与 θ \theta θ 无关。
  • const \text{const} const 包含所有与 θ \theta θ 无关的常数项。

补充说明

  1. 协方差矩阵的简化:如果 Σ \Sigma Σ 是对角矩阵或各向同性( Σ = σ 2 I \Sigma = \sigma^2 I Σ=σ2I),则计算马氏距离时只需对每个维度单独计算平方误差。
  2. 策略梯度的应用:在计算策略梯度 ∇ θ log ⁡ π θ \nabla_\theta \log \pi_{\theta} θlogπθ 时,常数项 const \text{const} const 的导数为零,因此可以安全忽略。

结论:通过假设协方差矩阵 Σ \Sigma Σ 固定且与参数 θ \theta θ 无关,课程中的公式从多元高斯分布的对数概率密度函数中合理推导得出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70438.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图解MySQL【日志】——Binlog

Binlog(Binary Log,归档日志) 为什么需要 Binlog? Binlog 是 MySQL 中的二进制日志,用于记录数据库的所有写操作(INSERT、UPDATE、DELETE 等) 1. 主从复制 作用:是 MySQL 主从复…

进程的介绍--进程状态/切换

1.冯 • 诺依曼体系结构 1.1 体系结构 冯•诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。数学家冯•诺依曼提出了计算机制造的三个基本原则,即采用二进制逻辑、程序存储执行以及计算机由五个部分组成&#x…

Python开源项目月排行 2025年1月

#2025年1月2025年2月2日1DeepSeek-R1当红炸子鸡,国人之骄傲!项目于 2025 年 1 月 20 日正式发布。早期的预览版(如 DeepSeek-R1-Lite-Preview)则在 2024 年 11 月 20 日亮相。 用途:DeepSeek-R1 是一个开源的推理模型&…

yolov8改进:efficientViT替换YOLOV8主干网络结构

6.1 efficientViT替换YOLOV8主干网络结构 6.1.1 effivientvit EfficientViT 的架构特点 EfficientViT 是一种结合了 Transformer 和卷积网络优点的轻量级模型,它的设计目标是高效地提取图像特征,同时减少计算量。以下是它的关键组成部分: …

Android Studio安装配置及运行

一、下载Android Studio 官网下载:下载 Android Studio 和应用工具 - Android 开发者 | Android Developers 跳转到下载界面,选择同意条款,并点击下载,如图: 二、详细安装 双击下载的文件 三、配置Android Studio …

OpenHarmony分布式数据管理子系统

OpenHarmony分布式数据管理子系统 简介 目录 组件说明 分布式数据对象数据共享分布式数据服务Key-Value数据库首选项关系型数据库标准数据化通路 相关仓 简介 子系统介绍 分布式数据管理子系统支持单设备的各种结构化数据的持久化,以及跨设备之间数据的同步、…

智能算法如何优化数字内容体验的个性化推荐效果

内容概要 在数字内容体验的优化过程中,个性化推荐系统的核心价值在于通过数据驱动的技术手段,将用户需求与内容资源进行高效匹配。系统首先基于用户行为轨迹分析,捕捉包括点击频次、停留时长、交互路径等关键指标,形成对用户兴趣…

超简单理解KMP算法(最长公共前后缀next数组、合并主子串、子串偏移法)

KMP算法理解 最长公共前后缀next合并主子串子串偏移 参考b站:子串偏移、合并主子串 最长公共前后缀next 这个概念是一个trick,帮助我们记录遍历了一遍的数组的相似特性,想出来确实很nb,我也不理解逻辑是怎么想出来的。 字符串的…

github 怎么创建一个私有repository 并从另外一台电脑拉取下来更新

1.github上新建一个repository 设置为private tips删除在这 点setting 然后往下拖动 会有个这里是用来删项目的 2.另外 一台电脑拉取这个repository的时候 需要配置 一个ssh key 这个key的内容生成参考本地电脑的生成 然后在这配置 2.1 生成 SSH 密钥(如果还没有…

LangChain 技术入门指南:探索语言模型的无限可能

在当今的技术领域,LangChain 正逐渐崭露头角,成为开发语言模型应用的强大工具。如果你渴望深入了解并掌握这一技术,那么就跟随本文一起开启 LangChain 的入门之旅吧! (后续将持续输出关于LangChain的技术文章,有兴趣的同学可以关注…

小米手环7屏幕脱胶维修

前言 本文仅用于记录维修过程,如有不对请指出,非常感谢! 参考视频 https://www.bilibili.com/video/BV1wV4y1H71N/?vd_sourcec887ed704029330114b8b207d8164686 胶水链接 常见的T-8000胶水,随便挑了一个送皮筋的 https://d…

自注意力机制和CNN的区别

CNN:一种只能在固定感受野范围内进行关注的自注意力机制。​CNN是自注意力的简化版本。自注意力:具有可学习感受野的CNN。自注意力是CNN的复杂形态,是更灵活的CNN,经过某些设计就可以变为CNN。 越灵活、越大的模型,需要…

上帝之眼——nmap

nmap介绍 Nmap(网络映射器)是一款广受欢迎的网络探测和安全评估工具,被誉为“上帝之眼”。它以其强大的扫描功能和广泛的应用场景,成为系统管理员和安全专家手中的得力助手。本文将对Nmap进行详细介绍,包括其优点、基本…

Spring Boot 整合 log4j2 日志配置教程

文章目录 前言一、常用日志框架二、配置参数介绍 1. 日志级别2. 输出形式3. 日志格式 3.1 PatternLayout 自定义日志布局 三、Log4j2 配置详解 1. 根节点 Configuration2. Appenders 节点 2.1 Console 节点2.2 File 节点2.3 RollingFile 节点 2.3.1 ThresholdFilter 节点2.3.…

MySQL八股学习笔记

文章目录 一、MySQL结构1.宏观结构1.1.Server层1.2.存储引擎层 2.建立链接-连接器3.查询缓存4.解析SQL-解析器(1)词法分析(2)语法分析 5.执行SQL5.1.预处理器 prepare5.2.优化器 optimize5.3.执行器 execute(1&#xf…

leetcode876.链表的中间结点

目录 问题描述示例提示 具体思路思路一 代码实现 问题描述 给你单链表的头结点 head ,请你找出并返回链表的中间结点。 如果有两个中间结点,则返回第二个中间结点。 题目链接:链表的中间结点 示例 提示 链表的结点数范围是 [1, 100]   1 &…

SpringBoot整合Redis和Redision锁

参考文章 1.Redis 1.导入依赖 <!--Redis依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.apache.c…

C++笔记之标准库中的std::copy 和 std::assign 作用于 std::vector

C++笔记之标准库中的std::copy 和 std::assign 作用于 std::vector code review! 文章目录 C++笔记之标准库中的std::copy 和 std::assign 作用于 std::vector1. `std::copy`1.1.用法1.2.示例2.`std::vector::assign`2.1.用法2.2.示例3.区别总结4.支持assign的容器和不支持ass…

C# 背景 透明 抗锯齿 (效果完美)

主要是通过 P/Invoke 技术调用 Windows API 函数 gdi32.dll/user32.dll&#xff0c;同时定义了一些结构体来配合这些 API 函数的使用&#xff0c;常用于处理图形绘制、窗口显示等操作。 运行查看效果 局部放大&#xff0c;抗锯齿效果很不错,尾巴毛毛清晰可见。 using System; u…

前端常见面试题-2025

vue4.0 Vue.js 4.0 是在 2021 年 9 月发布。Vue.js 4.0 是 Vue.js 的一个重要版本&#xff0c;引入了许多新特性和改进&#xff0c;旨在提升开发者的体验和性能。以下是一些关键的更新和新特性&#xff1a; Composition API 重构&#xff1a;Vue 3 引入了 Composition API 作为…