【现代深度学习技术】深度学习计算 | 读写文件

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ PyTorch深度学习 ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。
【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。

文章目录

    • 一、加载和保存张量
    • 二、加载和保存模型参数
    • 小结


  到目前为止,我们讨论了如何处理数据,以及如何构建、训练和测试深度学习模型。然而,有时我们希望保存训练的模型,以备将来在各种环境中使用(比如在部署中进行预测)。此外,当运行一个耗时较长的训练过程时,最佳的做法是定期保存中间结果,以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。因此,现在是时候学习如何加载和存储权重向量和整个模型了。

一、加载和保存张量

  对于单个张量,我们可以直接调用loadsave函数分别读写它们。这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

import torch
from torch import nn
from torch.nn import functional as Fx = torch.arange(4)
torch.save(x, 'x-file')

  我们现在可以将存储在文件中的数据读回内存。

x2 = torch.load('x-file')
x2

在这里插入图片描述

  我们可以存储一个张量列表,然后把它们读回内存。

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

在这里插入图片描述

  我们甚至可以写入或读取从字符串映射到张量的字典。当我们要读取或写入模型中的所有权重时,这很方便。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

在这里插入图片描述

二、加载和保存模型参数

  保存单个权重向量(或其他张量)确实有用,但是如果我们想保存整个模型,并在以后加载它们,单独保存每个向量则会变得很麻烦。毕竟,我们可能有数百个参数散布在各处。因此,深度学习框架提供了内置函数来保存和加载整个网络。需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。例如,如果我们有一个3层多层感知机,我们需要单独指定架构。因为模型本身可以包含任意代码,所以模型本身难以序列化。因此,为了恢复模型,我们需要用代码生成架构,然后从磁盘加载参数。让我们从熟悉的多层感知机开始尝试一下。

class MLP(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(20, 256)self.output = nn.Linear(256, 10)def forward(self, x):return self.output(F.relu(self.hidden(x)))net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

  接下来,我们将模型的参数存储在一个叫做“mlp.params”的文件中。

torch.save(net.state_dict(), 'mlp.params')

  为了恢复模型,我们实例化了原始多层感知机模型的一个备份。这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

在这里插入图片描述

  由于两个实例具有相同的模型参数,在输入相同的X时,两个实例的计算结果应该相同。让我们来验证一下。

Y_clone = clone(X)
Y_clone == Y

在这里插入图片描述

小结

  • saveload函数可用于张量对象的文件读写。
  • 我们可以通过参数字典保存和加载网络的全部参数。
  • 保存架构必须在代码中完成,而不是在参数中完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69305.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

退格法记单词(类似甘特图)

退格法记单词,根据记忆次数或熟练程度退格,以示区分,该方法用于短时高频大量记单词: explosion爆炸,激增 mosquito蚊子granary粮仓,谷仓 offhand漫不经心的 transient短暂的slob懒惰而邋遢的…

深入理解 DeepSeek MOE(Mixture of Experts)

1. 什么是 MOE? MOE(Mixture of Experts,专家混合)是一种模型架构,旨在通过多个专家(Experts)模型的协同工作来提高计算效率和模型性能。在 MOE 结构中,不是所有的专家都参与计算&a…

MySQL数据库基础(创建/删除 数据库/表)

一、数据库的操作 1.1 显示当前数据库 语法&#xff1a;show databases&#xff1b; <1>show 是一个关键字&#xff0c;表示要执行的操作类型 <2>databases 是复数&#xff0c;表示显示所有数据库 上面的数据库中&#xff0c;除了java113&#xff0c;其它的数据库…

Git 常用命令汇总

# 推荐一个十分好用的git插件---->GitLens 其实很多命令操作完全界面化了&#xff0c;鼠标点点就可以实现但是命令是必要的&#xff0c;用多了你就知道了 Git 常用命令汇总 1. Git 基础操作 命令作用git init初始化本地仓库git clone <repo-url>克隆远程仓库到本地g…

数据分析系列--⑦RapidMiner模型评价(基于泰坦尼克号案例含数据集)

一、前提 二、模型评估 1.改造⑥ 2.Cross Validation算子说明 2.1Cross Validation 的作用 2.1.1 模型评估 2.1.2 减少过拟合 2.1.3 数据利用 2.2 Cross Validation 的工作原理 2.2.1 数据分割 2.2.2 迭代训练与测试 ​​​​​​​ 2.2.3 结果汇总 ​​​​​​​ …

Deepseek-v3 / Dify api接入飞书机器人go程序

准备工作 开通了接收消息权限的飞书机器人&#xff0c;例如我希望用户跟飞书机器人私聊&#xff0c;就需要开通这个权限&#xff1a;读取用户发给机器人的单聊消息 im:message.p2p_msg:readonly准备好飞书机器人的API key 和Secretdeepseek-v3的api keysecret&#xff1a;http…

红黑树原理及C语言实现

目录 一、原理 二、操作示例 三、应用场景 四、C语言实现红黑树 五、代码说明 六、红黑树和AVL树对比 一、原理 熟悉红黑树之前&#xff0c;我们需要了解二叉树与二叉查找树概念&#xff0c;参见前述相关文章&#xff1a;二叉查找树BST详解及其C语言实现-CSDN博客 红黑…

DeepSeek V2报告阅读

概况 MoE架构&#xff0c;236B参数&#xff0c;每个token激活参数21B&#xff0c;支持128K上下文。采用了包括多头潜在注意力&#xff08;MLA&#xff09;和DeepSeekMoE在内的创新架构。MLA通过将KV缓存显著压缩成潜在向量来保证高效的推理&#xff0c;而DeepSeekMoE通过稀疏计…

TCP服务器与客户端搭建

一、思维导图 二、给代码添加链表 【server.c】 #include <stdio.h> #include <sys/socket.h> #include <sys/types.h> #include <fcntl.h> #include <arpa/inet.h> #include <unistd.h> #include <stdlib.h> #include <string.…

【自动化测试】使用Python selenium类库模拟手人工操作网页

使用Python selenium类库模拟手人工操作网页 背景准备工作安装Python版本安装selenium类库下载selenium驱动配置本地环境变量 自动化脚本输出页面表单自动化填充相关代码 背景 待操作网页必须使用IE浏览器登录访问用户本地只有edge浏览器&#xff0c;通过edge浏览器IE模式访问…

如何通过Davinci Configurator来新增一个BswM仲裁规则

本文框架 前言1.增加一个Mode Declaration Group2.增加一个Mode Request RPorts3.与操作Port的SWC连线4.新建一个Expression5.新建ActionList6.将表达式新建或加进现有Rule内7.生成BswM及Rte模块代码8.在代码中调用RTE接口前言 在Autosar模式管理系列介绍01-BswM文章中,我们对…

智慧交通:如何通过数据可视化提升城市交通效率

随着城市化进程的加速&#xff0c;交通管理面临着前所未有的挑战。为了应对日益复杂的交通状况&#xff0c;智慧交通系统应运而生&#xff0c;其中数据可视化技术成为了提升交通管理效率的关键一环。本文将探讨如何利用山海鲸可视化软件来优化交通管理&#xff0c;并展示其在智…

Android Studio:如何利用Application操作全局变量

目录 一、全局变量是什么 二、如何把输入的信息存储到全局变量 2.1 MainApplication类 2.2 XML文件 三、全局变量读取 四、修改manifest ​编辑 五、效果展示 一、全局变量是什么 全局变量是指在程序的整个生命周期内都可访问的变量&#xff0c;它的作用范围不限于某个…

Kafka 可靠性探究—副本刨析

Kafka 的多副本机制提升了数据容灾能力。 副本通常分为数据副本与服务副本。数据副本是指在不同的节点上持久化同一份数据&#xff1b;服务副本指多个节点提供同样的服务&#xff0c;每个节点都有能力接收来自外部的请求并进行相应的处理。 1 副本刨析 1.1 相关概念 AR&…

Unity Dots学习

ISystem和SystemBase的区别 Archetype和Chunk 相同组件的实体放在一起&#xff0c;也就是我们所说的内存块&#xff08;Chunk&#xff09; Chunk有一个大小 https://blog.csdn.net/weixin_40124181/article/details/103716338 如果批量操作的entity都是同一个chunk下的效率会更…

Oracle(windows安装遇到的ORA-12545、ORA-12154、ORA-12541、ORA-12514等问题)

其实出现该问题就是监听或者服务没有配好。 G:\xiaowangzhenshuai\software\Oracle\product\11.2.0\dbhome_1\NETWORK\ADMINlistener.ora SID_LIST_LISTENER (SID_LIST (SID_DESC (SID_NAME CLRExtProc)(ORACLE_HOME G:\xiaowangzhenshuai\software\Oracle\product\11.2.0\d…

Mac上搭建k8s环境——Minikube

1、在mac上安装Minikube可执行程序 brew cask install minikub 安装后使用minikube version命令查看版本 2、安装docker环境 brew install --cask --appdir/Applications docker #安装docker open -a Docker #启动docker 3、安装kubectl curl -LO https://storage.g…

PostgreSQL 中进行数据导入和导出

在数据库管理中&#xff0c;数据的导入和导出是非常常见的操作。特别是在 PostgreSQL 中&#xff0c;提供了多种工具和方法来实现数据的有效管理。无论是备份数据&#xff0c;还是将数据迁移到其他数据库&#xff0c;或是进行数据分析&#xff0c;掌握数据导入和导出的技巧都是…

【Gitlab】虚拟机硬盘文件丢失,通过xx-flat.vmdk恢复方法

前言 由于近期过年回家&#xff0c;为了用电安全直接手动关闭了所有的电源&#xff0c;导致年后回来商上电开机后exsi上的虚拟机出现了问题。显示我的gitlab虚拟机异常。 恢复 开机之后虚拟机异常&#xff0c;通过磁盘浏览发现gitlab服务器下面的虚拟机磁盘文件只有一个xxx-f…

python的ruff简单使用

Ruff 是一个用 Rust 编写的高性能 Python 静态分析工具和代码格式化工具。它旨在提供快速的代码检查和格式化功能&#xff0c;同时支持丰富的配置选项和与现有工具的兼容性。ruff是用rust实现的python Linter&Formatter。 安装&#xff1a; conda install -c conda-forge…