【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.18 逻辑运算引擎:数组条件判断的智能法则

在这里插入图片描述

1.18 逻辑运算引擎:数组条件判断的智能法则

1.18.1 目录

逻辑运算引擎:数组条件判断的智能法则
引言
短路逻辑的向量化替代方案
复合条件表达式的优化编写
掩码操作在图像分割中的应用
多条件并行评估的性能测试
总结
参考文献

1.18.2 短路逻辑的向量化替代方案

在Python中,短路逻辑(short-circuit logic)是一种常用的逻辑运算方式,但在NumPy数组中使用短路逻辑可能会导致性能问题。向量化操作可以提供更高效的解决方案。

标量条件
广播机制
数组条件
逻辑运算
布尔掩码
复合条件
按位与
按位或
结果掩码
数据筛选
1.18.2.1 短路逻辑的原理

短路逻辑的基本原理是:在逻辑表达式中,如果前一个条件的评估结果已经可以确定最终结果,则不会继续评估后续的条件。例如,“and”运算中,如果第一个条件为False,则后续条件不会被评估。

1.18.2.2 向量化逻辑运算的实现

NumPy提供了向量化逻辑运算的方法,可以在整个数组上进行高效的逻辑运算。

1.18.2.2.1 逻辑运算的广播规则图示
NumPy数组逻辑运算
广播规则
形状对齐
逐元素运算
结果数组
1.18.2.2.2 代码示例
import numpy as np# 创建两个NumPy数组
array1 = np.array([1, 2, 3, 4, 5])
array2 = np.array([3, 4, 5, 6, 7])# 使用向量化逻辑运算
result = np.logical_and(array1 > 2, array2 < 6)  # 条件判断# 打印结果
print(result)  # 输出: [False False  True False False]

1.18.3 复合条件表达式的优化编写

在实际应用中,经常需要编写多个条件的复合表达式。优化复合条件表达式可以显著提高代码的可读性和性能。

1.18.3.1 复合条件表达式的常见问题
  • 可读性问题:多个条件嵌套会导致代码难以阅读。
  • 性能问题:逐元素判断条件会导致计算效率低下。
1.18.3.2 优化方法
  • 使用布尔数组:通过布尔数组进行条件判断,提高代码的可读性和性能。
  • 使用numexpr:加速复杂表达式的计算。
1.18.3.2.1 使用布尔数组
import numpy as np# 创建NumPy数组
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])# 生成布尔数组
condition1 = data > 3
condition2 = data < 8# 使用布尔数组进行复合条件判断
result = np.logical_and(condition1, condition2)# 打印结果
print(result)  # 输出: [False False False  True  True  True  True False False False]
1.18.3.2.2 使用numexpr加速复杂表达式
import numpy as np
import numexpr as ne# 创建NumPy数组
data1 = np.random.randn(1000000)
data2 = np.random.randn(1000000)# 生成复合条件表达式
result = ne.evaluate('(data1 > 2) & (data2 < 6)')  # 使用numexpr加速# 打印结果
print(result)

1.18.4 掩码操作在图像分割中的应用

在图像处理中,掩码操作是一种常用的方法,用于提取图像中的感兴趣区域(ROI)。

1.18.4.1 医学图像ROI提取完整案例

假设我们有一个医学图像,需要提取其中的病变区域。我们可以通过生成掩码并应用掩码来实现这一点。

1.18.4.1.1 读取图像
import numpy as np
import matplotlib.pyplot as plt
from skimage import io, color# 读取医学图像
image = io.imread('medical_image.jpg')
image_gray = color.rgb2gray(image)  # 转换为灰度图像# 绘制原始图像
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(image, cmap='gray')
plt.title('原始图像')
1.18.4.1.2 生成掩码
# 生成掩码条件
mask = (image_gray > 0.2) & (image_gray < 0.8)# 绘制掩码
plt.subplot(1, 2, 2)
plt.imshow(mask, cmap='gray')
plt.title('掩码')
plt.show()
1.18.4.1.3 应用掩码
# 应用掩码提取ROI
image_roi = np.where(mask, image_gray, 0)# 绘制ROI图像
plt.figure(figsize=(6, 6))
plt.imshow(image_roi, cmap='gray')
plt.title('ROI图像')
plt.show()

1.18.5 多条件并行评估的性能测试

多条件并行评估可以显著提高代码的执行效率。我们将通过一个性能测试来验证这一点。

1.18.5.1 测试设置
  • 数据规模:1000万数据点
  • 测试方法:使用NumPy的向量化逻辑运算和逐元素逻辑运算进行对比测试。
1.18.5.1.1 代码示例
import numpy as np
import time# 生成大规模数据
data = np.random.randn(10000000)# 逐元素逻辑运算
def sequential_evaluation(data):result = []for value in data:if value > 0.5 and value < 1.5:result.append(True)else:result.append(False)return np.array(result)# 向量化逻辑运算
def vectorized_evaluation(data):return (data > 0.5) & (data < 1.5)# 测试逐元素逻辑运算
start_time = time.time()
result_sequential = sequential_evaluation(data)
end_time = time.time()
time_sequential = end_time - start_time
print(f"逐元素逻辑运算时间: {time_sequential:.6f}秒")# 测试向量化逻辑运算
start_time = time.time()
result_vectorized = vectorized_evaluation(data)
end_time = time.time()
time_vectorized = end_time - start_time
print(f"向量化逻辑运算时间: {time_vectorized:.6f}秒")# 生成结果图
import matplotlib.pyplot as pltplt.bar(['逐元素逻辑运算', '向量化逻辑运算'], [time_sequential, time_vectorized])
plt.xlabel('方法')
plt.ylabel('时间(秒)')
plt.title('多条件并行评估的性能对比')
plt.show()

1.18.6 逻辑运算的GPU加速方案

对于大规模数据的逻辑运算,可以使用GPU进行加速。我们将介绍如何使用CuPy库在GPU上进行逻辑运算。

1.18.6.1 CuPy库简介

CuPy是一个兼容NumPy的库,支持在GPU上进行高效的数组操作。

1.18.6.1.1 代码示例
import numpy as np
import cupy as cp
import time# 生成大规模数据
data = np.random.randn(10000000)# 将数据转移到GPU
gpu_data = cp.array(data)# 逐元素逻辑运算
def sequential_evaluation(data):result = []for value in data:if value > 0.5 and value < 1.5:result.append(True)else:result.append(False)return np.array(result)# 向量化逻辑运算
def vectorized_evaluation(data):return (data > 0.5) & (data < 1.5)# GPU向量化逻辑运算
def gpu_vectorized_evaluation(gpu_data):return (gpu_data > 0.5) & (gpu_data < 1.5)# 测试逐元素逻辑运算
start_time = time.time()
result_sequential = sequential_evaluation(data)
end_time = time.time()
time_sequential = end_time - start_time
print(f"逐元素逻辑运算时间: {time_sequential:.6f}秒")# 测试NumPy向量化逻辑运算
start_time = time.time()
result_vectorized = vectorized_evaluation(data)
end_time = time.time()
time_vectorized = end_time - start_time
print(f"NumPy向量化逻辑运算时间: {time_vectorized:.6f}秒")# 测试CuPy向量化逻辑运算
start_time = time.time()
result_gpu_vectorized = gpu_vectorized_evaluation(gpu_data)
end_time = time.time()
time_gpu_vectorized = end_time - start_time
print(f"CuPy向量化逻辑运算时间: {time_gpu_vectorized:.6f}秒")# 生成结果图
import matplotlib.pyplot as pltplt.bar(['逐元素逻辑运算', 'NumPy向量化逻辑运算', 'CuPy向量化逻辑运算'], [time_sequential, time_vectorized, time_gpu_vectorized])
plt.xlabel('方法')
plt.ylabel('时间(秒)')
plt.title('逻辑运算的性能对比')
plt.show()

1.18.7 总结

本文详细介绍了NumPy数组条件判断的智能法则,包括短路逻辑的向量化替代方案、复合条件表达式的优化编写、掩码操作在图像分割中的应用、多条件并行评估的性能测试以及逻辑运算的GPU加速方案。通过这些内容,希望读者可以更好地理解和应用NumPy的逻辑运算功能,从而在实际项目中提高代码效率。

1.18.8 参考文献

参考资料名链接
NumPy官方文档https://numpy.org/doc/stable/
Matplotlib官方文档https://matplotlib.org/
Scikit-Image官方文档https://scikit-image.org/docs/stable/
numexpr官方文档https://numexpr.readthedocs.io/en/latest/
CuPy官方文档https://docs.cupy.dev/en/latest/
短路逻辑与向量化操作https://eli.thegreenplace.net/2015/understanding-short-circuiting-with-and-and-or-in-python/
布尔数组与条件判断https://numpy.org/doc/stable/user/basics.indexing.html#boolean-or-mask-index-arrays
图像处理与ROI提取https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/py_histogram_equalization.html
NumPy性能优化https://realpython.com/faster-numpy-arrays-cython/
CUDA编程入门https://developer.nvidia.com/blog/getting-started-cuda-python/
GPU加速的Python库https://www.tensorflow.org/install/gpu
数据可视化https://seaborn.pydata.org/
数据科学手册https://jakevdp.github.io/PythonDataScienceHandbook/
医学图像处理https://pyradiomics.readthedocs.io/en/latest/
并行计算https://docs.ray.io/en/latest/

这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战

前一篇文章&#xff0c;Tensor 基本操作1 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 目录 Tensor 基本操作torch.max默认指定维度 Tensor 基本操作 torch.max torch.max 实现降维运算&#xff0c;基于指定的 d…

【ESP32】ESP-IDF开发 | WiFi开发 | UDP用户数据报协议 + UDP客户端和服务器例程

1. 简介 UDP协议&#xff08;User Datagram Protocol&#xff09;&#xff0c;全称用户数据报协议&#xff0c;它是一种面向非连接的协议&#xff0c;面向非连接指的是在正式通信前不必与对方先建立连接&#xff0c; 不管对方状态就直接发送。至于对方是否可以接收到这些数据内…

动手学深度学习-卷积神经网络-3填充和步幅

目录 填充 步幅 小结 在上一节的例子&#xff08;下图&#xff09; 中&#xff0c;输入的高度和宽度都为3&#xff0c;卷积核的高度和宽度都为2&#xff0c;生成的输出表征的维数为22。 正如我们在 上一节中所概括的那样&#xff0c;假设输入形状为nhnw&#xff0c;卷积核形…

Airflow:精通Airflow任务依赖

任务依赖关系是任何工作流管理系统的核心概念&#xff0c;Apache Airflow也不例外。它们确定在工作流中执行任务的顺序和条件&#xff0c;确保以正确的顺序完成任务&#xff0c;并确保在相关任务开始之前成功完成先决任务。在本文中我们将探讨Apache Airflow中的任务依赖关系&a…

【数据结构】_链表经典算法OJ:合并两个有序数组

目录 1. 题目描述及链接 2. 解题思路 3. 程序 3.1 第一版 3.2 第二版 1. 题目描述及链接 题目链接&#xff1a;21. 合并两个有序链表 - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 将两个升序链表合并为一个新的 升序 链表并返回。 新链表是通过拼接给…

全程Kali linux---CTFshow misc入门

图片篇(基础操作) 第一题&#xff1a; ctfshow{22f1fb91fc4169f1c9411ce632a0ed8d} 第二题 解压完成后看到PNG&#xff0c;可以知道这是一张图片&#xff0c;使用mv命令或者直接右键重命名&#xff0c;修改扩展名为“PNG”即可得到flag。 ctfshow{6f66202f21ad22a2a19520cdd…

基于SMPL的三维人体重建-深度学习经典方法之VIBE

本文以开源项目VIBE[1-2]为例&#xff0c;介绍下采用深度学习和SMPL模板的从图片进行三维人体重建算法的整体流程。如有错误&#xff0c;欢迎评论指正。 一.算法流程 包含生成器模块和判别器模块&#xff0c;核心贡献就在于引入了GRU模块&#xff0c;使得当前帧包含了先前帧的先…

深入浅出Linux操作系统大数据定制Shell编程(六)

深入浅出Linux操作系统大数据定制Shell编 1、大数据定制-Shell编程1.1、什么是Shell1.2、Shell脚本执行方式 2、Shell变量2.1、shell变量的定义2.1.1、设置环境变量2.1.2、多行注释 2.2、位置参数变量2.2.1、语法 2.3、预定义变量2.4、运算符2.4.1、条件判断2.4.2、case语句2.4…

30289_SC65XX功能机MMI开发笔记(ums9117)

建立窗口步骤&#xff1a; 引入图片资源 放入图片 然后跑make pprj new job8 可能会有bug,宏定义 还会有开关灯报错&#xff0c;看命令行注释掉 接着把ture改成false 然后命令行new一遍&#xff0c;编译一遍没报错后 把编译器的win文件删掉&#xff0c; 再跑一遍虚拟机命令行…

“““【运用 R 语言里的“predict”函数针对 Cox 模型展开新数据的预测以及推理。】“““

主题与背景 本文主要介绍了如何在R语言中使用predict函数对已拟合的Cox比例风险模型进行新数据的预测和推理。Cox模型是一种常用的生存分析方法&#xff0c;用于评估多个因素对事件发生时间的影响。文章通过具体的代码示例展示了如何使用predict函数的不同参数来获取生存概率和…

Effective Objective-C 2.0 读书笔记—— objc_msgSend

Effective Objective-C 2.0 读书笔记—— objc_msgSend 文章目录 Effective Objective-C 2.0 读书笔记—— objc_msgSend引入——静态绑定和动态绑定OC之中动态绑定的实现方法签名方法列表 其他方法objc_msgSend_stretobjc_msgSend_fpretobjc_msgSendSuper 尾调用优化总结参考文…

【竞技宝】LPL:IG3-1击败RNG

北京时间1月26日&#xff0c;英雄联盟LPL2025正在如火如荼的进行之中&#xff0c;昨日共进行两场比赛。第二场比赛由RNG对阵IG。本场比赛&#xff0c;RNG在首局前期打出完美节奏后一直压制着IG拿下比赛&#xff0c;但此后的三局&#xff0c;IG发挥出自己擅长大乱斗的能力在团战…

web3py+flask+ganache的智能合约教育平台

最近在学习web3的接口文档&#xff0c;使用web3pyflaskganache写了一个简易的智能合约教育平台&#xff0c;语言用的是python&#xff0c;ganche直接使用的本地区块链网络&#xff0c;用web3py进行交互。 代码逻辑不难&#xff0c;可以私信或者到我的闲鱼号夏沫mds获取我的代码…

媒体新闻发稿要求有哪些?什么类型的稿件更好通过?

为了保证推送信息的内容质量&#xff0c;大型新闻媒体的审稿要求一向较为严格。尤其在商业推广的过程中&#xff0c;不少企业的宣传稿很难发布在这些大型新闻媒体平台上。 媒体新闻发稿要求有哪些&#xff1f;就让我们来了解下哪几类稿件更容易过审。 一、媒体新闻发稿要求有哪…

ui-automator定位官网文档下载及使用

一、ui-automator定位官网文档简介及下载 AndroidUiAutomator&#xff1a;移动端特有的定位方式&#xff0c;uiautomator是java实现的&#xff0c;定位类型必须写成java类型 官方地址&#xff1a;https://developer.android.com/training/testing/ui-automator.html#ui-autom…

ThreadLocal概述、解决SimpleDateFormat出现的异常、内存泄漏、弱引用、remove方法

①. ThreadLocal简介 ①. ThreadLocal是什么 ①. ThreadLocal本地线程变量,线程自带的变量副本(实现了每一个线程副本都有一个专属的本地变量,主要解决的就是让每一个线程绑定自己的值,自己用自己的,不跟别人争抢。通过使用get()和set()方法,获取默认值或将其值更改为当前线程…

总结8..

#include <stdio.h> // 定义结构体表示二叉树节点&#xff0c;包含左右子节点编号 struct node { int l; int r; } tree[100000]; // 全局变量记录二叉树最大深度&#xff0c;初始为0 int ans 0; // 深度优先搜索函数 // pos: 当前节点在数组中的位置&#xff0c…

科普篇 | “机架、塔式、刀片”三类服务器对比

一、引言 在互联网的世界里&#xff0c;服务器就像是默默运转的超级大脑&#xff0c;支撑着我们日常使用的各种网络服务。今天&#xff0c;咱们来聊聊服务器家族中的三位 “明星成员”&#xff1a;机架式服务器、塔式服务器和刀片式服务器。如果把互联网比作一座庞大的城市&…

Day25-【13003】短文,什么是算法?如何衡量时间复杂度?什么是最优,平均时间复杂度?

文章目录 第二节概览什么是算法&#xff1f;算法的5个特性&#xff1f; 算法如何评估&#xff1f;时间指标如何衡量&#xff1f;算法的复杂度如何度量&#xff1f;算法开销上限和下限如何表示&#xff1f;什么是常数复杂度&#xff1f;线性操作&#xff1f;对数复杂度-线性对数…