python学opencv|读取图像(四十二)使用cv2.add()函数实现多图像叠加

【1】引言

前序学习过程中,掌握了灰度图像和彩色图像的掩模操作:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客

python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖-CSDN博客

也受此启发,尝试直接使用cv2.add()函数让两张图片进行叠加:

python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加-CSDN博客

在此基础上,我们如果进一步尝试,就可以对3张图片进行叠加。

比如,我们已经知晓彩色三通道图像的每一个通道都可以单独设置对应BGR值,它们叠加的效果是新的彩色图像。实际上,这种叠加效果我们早期在没有使用cv2.add()函数的时候,已经悄然获得了:

python学opencv|读取图像(十)用numpy创建彩色图像_cv2 通过numpy创建图像-CSDN博客

此时,在已经、学习了cv2.add()函数的基础上,我们可以进一步验证。

【2】可行性分析

【2.1】未使用cv.add()函数

在python学opencv|读取图像(十)用numpy创建彩色图像_cv2 通过numpy创建图像-CSDN博客文章中,使用的代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv2模块
from imageio.v2 import imwrite# 定义图像
t = np.arange(300, 600, 20)  # 定义变量,在[300,600)区间,每隔20取一个值
t_max = np.max(t)  # 取变量最大值作为像素大小
print('t_max=', t_max)  # 输出最大值
image = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image[:, :, 0] = 155  # 第一个通道值
image[:, :, 1] = 200  # 第二个通道值
image[:, :, 2] = 255  # 第三个通道值# 显示和保存定义的图像
cv.imshow('display-pho', image)  # 显示图像
cv.imwrite('gray-pho-3.png', image)  # 保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

这其中的核心代码段,有一个逐层覆盖和叠加的效果:

image[:, :, 0] = 155  # 第一个通道值
image[:, :, 1] = 200  # 第二个通道值
image[:, :, 2] = 255  # 第三个通道值

【2.2】使用cv.add()函数

为验证使用add()函数的叠加效果,在上述代码后面补充一段代码:

image1 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image1[:, :, 0] = 155  # 第一个图像
image2 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image2[:, :, 1] = 200  # 第二个图像
image3 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image3[:, :, 2] = 255  # 第三个图像
img=cv.add(image1,image2) # 第一和第二图像叠加
cv.imshow('display-12', img)  # 显示图像
cv.imwrite('gray-pho-12.png', img)  # 保存图像
img=cv.add(img,image3) # 第一、第二和第三图像叠加
cv.imshow('display-123', img)  # 显示图像
cv.imwrite('gray-pho-123.png', img)  # 保存图像

运行代码后,获得的图像为:

图1 gray-pho-3.png-未使用add()函数

图2 gray-pho-123.png-使用add()函数 

由图1和图2可见,无论是否使用add()函数,图像叠加的本质都是各个通道的BGR值对应相加,获得的图像效果是一样的。

此外,中间的过渡图像,也就是image1[:, :, 0] = 155和image1[:, :,1] = 200叠加后的图像为:

图3 gray-pho-12.png-使用add()函数

【2.3】使用cv.add()函数+掩模效果

在前述的两个测试中,使用的图像叠加都没有尝试掩模效果。

但add()函数本身允许添加一个mask参数来做掩模效果,为验证掩模效果,继续增加下述代码:

#验证掩模效果
mask=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask[20:300, 200:500, ] = 200  # 第二个图像
cv.imshow('display-mask', mask)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask)  # 保存图像
img=cv.add(image1,image2,mask=mask) # 第一和第二图像叠加
cv.imshow('display-12-mask', img)  # 显示图像
cv.imwrite('gray-pho-12-mask.png', img)  # 保存图像

这里应用掩模效果的核心代码为:

img=cv.add(image1,image2,mask=mask) # 第一和第二图像叠加

代码运行后的掩模效果为:

图4 gray-pho-12-mask.png-使用add()函数

由图4可见,图像只在使用掩模的区域进行了效果叠加,其他区域仍然保留了全0矩阵对应的纯黑色画布特点。

因为刚好掩模的矩阵赋值也是200,和image2的通道赋值一样,为进一步测试,把这个掩模的矩阵赋值改到255,增加下述代码:

mask1=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask1[20:300, 200:500, ] = 255  # 第二个图像
cv.imshow('display-mask', mask1)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask1)  # 保存图像
img=cv.add(image1,image2,mask=mask1) # 第一和第二图像叠加
cv.imshow('display-123-mask', img)  # 显示图像
cv.imwrite('gray-pho-123-mask.png', img)  # 保存图像

此时获得的图像为:

图5 gray-pho-mask.png-掩模

图6 gray-pho-123-mask.png-使用add()函数+掩模

可见,使用掩模效果后,图像依然是image1+image2的效果,且只在掩模控制的区域显示这个叠加效果。

此时的完整代码为:

import numpy as np  # 引入numpy模块
import cv2 as cv  # 引入cv2模块
from imageio.v2 import imwrite# 定义图像
t = np.arange(300, 600, 20)  # 定义变量,在[300,600)区间,每隔20取一个值
t_max = np.max(t)  # 取变量最大值作为像素大小
print('t_max=', t_max)  # 输出最大值
image = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image[:, :, 0] = 155  # 第一个通道值
image[:, :, 1] = 200  # 第二个通道值
image[:, :, 2] = 255  # 第三个通道值# 显示和保存定义的图像
cv.imshow('display-pho', image)  # 显示图像
cv.imwrite('gray-pho-3.png', image)  # 保存图像image1 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image1[:, :, 0] = 155  # 第一个图像
image2 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image2[:, :, 1] = 200  # 第二个图像
image3 = np.zeros([t_max, t_max, 3], np.uint8)  # 定义一个竖直和水平像素均为t_max的全0矩阵
image3[:, :, 2] = 255  # 第三个图像
img=cv.add(image1,image2) # 第一和第二图像叠加
cv.imshow('display-12', img)  # 显示图像
cv.imwrite('gray-pho-12.png', img)  # 保存图像
img=cv.add(img,image3) # 第一、第二和第三图像叠加
cv.imshow('display-123', img)  # 显示图像
cv.imwrite('gray-pho-123.png', img)  # 保存图像#验证掩模效果
mask=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask[20:300, 200:500, ] = 200  # 第二个图像
cv.imshow('display-mask', mask)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask)  # 保存图像
img=cv.add(image1,image2,mask=mask) # 第一和第二图像叠加
cv.imshow('display-12-mask', img)  # 显示图像
cv.imwrite('gray-pho-12-mask.png', img)  # 保存图像mask1=np.zeros((t_max, t_max,1),np.uint8)   # 定义一个竖直和水平像素均为t_max的全0矩阵
mask1[20:300, 200:500, ] = 255  # 第二个图像
cv.imshow('display-mask', mask1)  # 显示图像
cv.imwrite('gray-pho-mask.png',mask1)  # 保存图像
img=cv.add(image1,image2,mask=mask1) # 第一和第二图像叠加
cv.imshow('display-123-mask', img)  # 显示图像
cv.imwrite('gray-pho-123-mask.png', img)  # 保存图像cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

【3】总结

掌握了使用python+opencv实现使用cv2.add()函数进行多图像叠加的技巧,并探索了掩模的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/68247.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3 vue2区别

Vue 3 和 Vue 2 之间存在多个方面的区别,以下是一些主要的差异点: 1. 性能改进 Vue 3:在性能上有显著提升,包括更小的包体积、更快的渲染速度和更好的内存管理。Vue 2:性能相对较低,尤其是在大型应用中。…

将 OneLake 数据索引到 Elasticsearch - 第 1 部分

作者:来自 Elastic Gustavo Llermaly 学习配置 OneLake,使用 Python 消费数据并在 Elasticsearch 中索引文档,然后运行语义搜索。 OneLake 是一款工具,可让你连接到不同的 Microsoft 数据源,例如 Power BI、Data Activ…

开源项目Umami网站统计MySQL8.0版本Docker+Linux安装部署教程

Umami是什么? Umami是一个开源项目,简单、快速、专注用户隐私的网站统计项目。 下面来介绍如何本地安装部署Umami项目,进行你的网站统计接入。特别对于首次使用docker的萌新有非常好的指导、参考和帮助作用。 Umami的github和docker镜像地…

两种交换排序算法--冒泡,快速

目录 1.冒泡排序原理 2.快速排序原理 3.冒泡代码实现 4.快速排序代码实现 1.冒泡排序原理 冒泡排序(Bubble Sort)是一种简单的排序算法,基本思想是通过反复交换相邻的元素,直到整个序列有序。它的名字来源于较大的元素像气泡…

Java程序基础⑪Java的异常体系和使用

目录 1. 异常的概念和分类 1.1 异常的概念 1.2 异常的分类 2. 异常的体系结构 3. 异常的处理 3.1 异常的抛出 3.2 异常的捕获与处理 3.3 异常的处理流程 4. 自定义异常类 4.1 自定义异常类的规则 4.2 自定义异常案例 1. 异常的概念和分类 1.1 异常的概念 在Java中&…

大话特征工程:1.维数灾难与特征轮回

一、维度深渊 公元 2147 年,人类文明进入了数据驱动的超级智能时代。从金融到医疗,从教育到娱乐,所有决策都仰赖“全维计算网络”(高维特征空间)。这套系统将全球所有信息抽象成数以亿计的多维特征&#xff08…

在docker上部署nacos

一、首先下载nacos的docker镜像 docker pull nacos:2.5.0 二、然后下载nacos的安装包,这里是为了拿到他的配置文件。下载完解压缩后,以备后用 https://download.nacos.io/nacos-server/nacos-server-2.5.0.zip?spm5238cd80.6a33be36.0.0.2eb81e5d7mQ…

libOnvif通过组播不能发现相机

使用libOnvif库OnvifDiscoveryClient类, auto discovery new OnvifDiscoveryClient(QUrl(“soap.udp://239.255.255.250:3702”), cb.Build()); 会有错误: end of file or no input: message transfer interrupted or timed out(30 sec max recv delay)…

关于 SR-IOV 架构论文的总结文章

关于 SR-IOV 架构论文的总结文章 在计算机虚拟化技术不断发展的进程中,SR - IOV 架构凭借其在提升 I/O 性能、优化资源利用等方面的优势,成为众多研究关注的焦点。通过对 4 篇相关论文的研读,我们可以从多个维度深入了解 SR - IOV 架构的核心要点。 一、SR - IOV 架构的原…

kotlin内联函数——let,run,apply,also,with的区别

一、概述 为了帮助您根据使用场景选择合适的作用域函数(scope function),我们将对它们进行详细描述并提供使用建议。从技术上讲,许多情况下范围函数是可以互换使用的,因此示例中展示了使用它们的约定俗成的做法。 1.…

JVM常见知识点

在《深入理解Java虚拟机》一书中,介绍了JVM的相关特性。 1、JVM的内存区域划分 在真实的操作系统中,对于地址空间进行了分区域的设计,由于JVM是仿照真实的机器进行设计的,那么也进行了分区域的设计。核心区域有四个,…

Windows系统Tai时长统计工具的使用体验

Windows系统Tai时长统计工具的使用体验 一、Tai介绍1.1 Tai简介1.2 安装环境要求 二、下载及安装Tai2.1 下载Tai2.2 运行Tai工具 三、Tai的使用体验3.1 系统设置3.2 时长统计3.3 分类管理 四、总结 一、Tai介绍 1.1 Tai简介 Tai是一款专为Windows系统设计的开源软件&#xff…

【架构面试】二、消息队列和MySQL和Redis

MQ MQ消息中间件 问题引出与MQ作用 常见面试问题:面试官常针对项目中使用MQ技术的候选人提问,如如何确保消息不丢失,该问题可考察候选人技术能力。MQ应用场景及作用:以京东系统下单扣减京豆为例,MQ用于交易服和京豆服…

HTML一般标签和自闭合标签介绍

在HTML中,标签用于定义网页内容的结构和样式。标签通常分为两类:一般标签(也称为成对标签或开放闭合标签)和自闭合标签(也称为空标签或自结束标签)。 以下是这两类标签的详细说明: 一、一般标…

【8】思科IOS AP升级操作

1.概述 本文主要针对思科AP的升级操作进行记录,思科的AP目前主要分为IOS和COS AP,IOS AP是我们常见的AP3502/AP1602/AP2702等等型号的AP,而COS AP是AP2802/3802等型号的AP。当然这里所指的都是一些室内AP,如AP1572等室外AP也同样适用。本文先对IOS AP的升级操作进行总结,…

Android GLSurfaceView 覆盖其它控件问题 (RK平台)

平台 涉及主控: RK3566 Android: 11/13 问题 在使用GLSurfaceView播放视频的过程中, 增加了一个播放控制面板, 覆盖在视频上方. 默认隐藏setVisibility(View.INVISIBLE);点击屏幕再显示出来. 然而, 在RK3566上这个简单的功能却无法正常工作. 通过缩小视频窗口可以看到, 实际…

Java Web-Tomcat Servlet

Web服务器-Tomcat Web服务器简介 Web 服务器是一种软件程序,它主要用于在网络上接收和处理客户端(如浏览器)发送的 HTTP 请求,并返回相应的网页内容或数据。以下是关于 Web 服务器的详细介绍: 功能 接收请求&#…

[Computer Vision]实验二:图像特征点提取

目录 一、实验内容 二、实验过程及结果 2.1 Harris角点检测 2.2 SIFT算法 三、实验小结 一、实验内容 采用Harris与SIFT分别提取特征点及对应的描述子,对比两者的区别(特征点数量、分布、描述子维度、图像变化对二者的影响等)利用特征匹…

自动化实现的思路变化

阶段一: 1、成功调用。第一步,一般是用现用的工具,或者脚本成功调用接口 2、解决关联接口的参数传递。有的接口直接,存在参数的传递,一般的思路,就是将这个参数设置为变量。 3、简化代码。总会有些东西是重…

【AI非常道】二零二五年一月,AI非常道

经常在社区看到一些非常有启发或者有收获的话语,但是,往往看过就成为过眼云烟,有时再想去找又找不到。索性,今年开始,看到好的言语,就记录下来,一月一发布,亦供大家参考。 有关AI非…