Chapter4.1 Coding an LLM architecture

文章目录

  • 4 Implementing a GPT model from Scratch To Generate Text
    • 4.1 Coding an LLM architecture

4 Implementing a GPT model from Scratch To Generate Text

  • 本章节包含

    1. 编写一个类似于GPT的大型语言模型(LLM),这个模型可以被训练来生成类似人类的文本。
    2. Normalizing layer activations to stabilize neural network training
    3. 在深度神经网络中添加shortcut connections,以更有效地训练模型
    4. 实现 Transformer 模块以创建不同规模的 GPT 模型
    5. 计算 GPT 模型的参数数量及其存储需求

    在上一章中,学习了多头注意力机制并对其进行了编码,它是LLMs的核心组件之一。在本章中,将编写 LLM 的其他构建块,并将它们组装成类似 GPT 的模型


4.1 Coding an LLM architecture

  • 诸如GPT和Llama等模型,基于原始Transformer架构中的decoder部分,因此,这些LLM通常被称为"decoder-like" LLMs,与传统的深度学习模型相比,LLM规模更大,这主要归因于它们庞大的参数数量,而非代码量。因为它的许多组件都是重复的,下图提供了类似 GPT LLM 的自上而下视图

本章将详细构建一个最小规模的GPT-2模型(1.24亿参数),并展示如何加载预训练权重以兼容更大规模的模型。

  • 1.24亿参数GPT-2模型的配置细节包括:

    GPT_CONFIG_124M = {"vocab_size": 50257,    # Vocabulary size"context_length": 1024, # Context length"emb_dim": 768,         # Embedding dimension"n_heads": 12,          # Number of attention heads"n_layers": 12,         # Number of layers"drop_rate": 0.1,       # Dropout rate"qkv_bias": False       # Query-Key-Value bias
    }
    

    我们使用简短的变量名以避免后续代码行过长

    1. "vocab_size" 词汇表大小,由 BPE tokenizer 支持,值为 50,257。
    2. "context_length" 模型的最大输入标记数量,通过 positional embeddings 实现。
    3. "emb_dim" token输入的嵌入大小,将每个token转换为 768 维向量。
    4. "n_heads" 多头注意力机制中的注意力头数量。
    5. "n_layers" 是模型中 transformer 块的数量
    6. "drop_rate" 是 dropout 机制的强度,第 3 章讨论过;0.1 表示在训练期间丢弃 10% 的隐藏单元以缓解过拟合
    7. "qkv_bias" 决定多头注意力机制(第 3 章)中的 Linear 层在计算查询(Q)、键(K)和值(V)张量时是否包含偏置向量;我们将禁用此选项,这是现代 LLMs 的标准做法;然而,我们将在第 5 章将 OpenAI 的预训练 GPT-2 权重加载到我们的重新实现时重新讨论这一点。
  • 下图中的方框展示了我们为实现最终 GPT 架构所需处理的各个概念的顺序。我们将从第一步开始,即一个我们称为 DummyGPTModel 的 GPT 骨架占位符:

    import torch
    import torch.nn as nnclass DummyGPTModel(nn.Module):def __init__(self, cfg):super().__init__()self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])self.drop_emb = nn.Dropout(cfg["drop_rate"])# Use a placeholder for TransformerBlockself.trf_blocks = nn.Sequential(*[DummyTransformerBlock(cfg) for _ in range(cfg["n_layers"])])# Use a placeholder for LayerNormself.final_norm = DummyLayerNorm(cfg["emb_dim"])self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)def forward(self, in_idx):batch_size, seq_len = in_idx.shapetok_embeds = self.tok_emb(in_idx)pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))x = tok_embeds + pos_embedsx = self.drop_emb(x)x = self.trf_blocks(x)x = self.final_norm(x)logits = self.out_head(x)return logitsclass DummyTransformerBlock(nn.Module):def __init__(self, cfg):super().__init__()# A simple placeholderdef forward(self, x):# This block does nothing and just returns its input.return xclass DummyLayerNorm(nn.Module):def __init__(self, normalized_shape, eps=1e-5):super().__init__()# The parameters here are just to mimic the LayerNorm interface.def forward(self, x):# This layer does nothing and just returns its input.return x
    
    1. DummyGPTModel:简化版的 GPT 类模型,使用 PyTorch 的 nn.Module 实现。
    2. 模型组件:包括标记嵌入、位置嵌入、丢弃层、变换器块、层归一化和线性输出层。
    3. 配置字典:配置通过 Python 字典传入,如 GPT_CONFIG_124M,用于传递模型配置。
    4. forward 方法:描述数据从输入到输出的完整流程。计算嵌入 → 应用 dropout → 通过 transformer blocks 处理 → 应用归一化 → 生成 logits。
    5. 占位符DummyLayerNormDummyTransformerBlock 是待实现的组件。
  • 数据流动:下图提供了 GPT 模型中数据流动的高层次概述。

    使用 tiktoken 分词器对由 GPT 模型的两个文本输入组成的批次进行分词:

    import tiktokentokenizer = tiktoken.get_encoding("gpt2")batch = []txt1 = "Every effort moves you"
    txt2 = "Every day holds a"batch.append(torch.tensor(tokenizer.encode(txt1)))
    batch.append(torch.tensor(tokenizer.encode(txt2)))
    batch = torch.stack(batch, dim=0)
    print(batch)"""输出"""
    tensor([[6109, 3626, 6100,  345],[6109, 1110, 6622,  257]])
    

    接下来,我们初始化一个包含 1.24 亿参数的 DummyGPTModel 实例,并将 tokenized batch 输入其中。

    torch.manual_seed(123)
    model = DummyGPTModel(GPT_CONFIG_124M)logits = model(batch)
    print("Output shape:", logits.shape)
    print(logits)"""输出"""
    Output shape: torch.Size([2, 4, 50257])
    tensor([[[-0.9289,  0.2748, -0.7557,  ..., -1.6070,  0.2702, -0.5888],[-0.4476,  0.1726,  0.5354,  ..., -0.3932,  1.5285,  0.8557],[ 0.5680,  1.6053, -0.2155,  ...,  1.1624,  0.1380,  0.7425],[ 0.0447,  2.4787, -0.8843,  ...,  1.3219, -0.0864, -0.5856]],[[-1.5474, -0.0542, -1.0571,  ..., -1.8061, -0.4494, -0.6747],[-0.8422,  0.8243, -0.1098,  ..., -0.1434,  0.2079,  1.2046],[ 0.1355,  1.1858, -0.1453,  ...,  0.0869, -0.1590,  0.1552],[ 0.1666, -0.8138,  0.2307,  ...,  2.5035, -0.3055, -0.3083]]],grad_fn=<UnsafeViewBackward0>)
    
    1. 输出张量:输出张量有两行,分别对应两个文本样本。每个文本样本由 4 个标记组成;每个标记是一个 50,257 维的向量,这与标记器的词汇表大小一致。
    2. 嵌入维度:50,257 维对应词汇表中的唯一标记,后处理阶段将其转换回 token IDs 并解码为单词。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/66356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginx正向代理从安装到使用一网打尽系列(二)使用

一、背景 使用场景大总结&#xff0c;可作为参考手册用 nginx正向代理从安装到使用一网打尽系列&#xff08;一&#xff09;安装 nginx正向代理从安装到使用一网打尽系列&#xff08;二&#xff09;使用 二、使用场景 1、所有内网应用都不能直接访问外网&#xff0c;但需要…

论文解读 | NeurIPS'24 IRCAN:通过识别和重新加权上下文感知神经元来减轻大语言模型生成中的知识冲突...

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 点击 阅读原文 观看作者讲解回放&#xff01; 作者简介 史丹&#xff0c;天津大学博士生 内容简介 大语言模型&#xff08;LLM&#xff09;经过海量数据训练后编码了丰富的世界知识。最近的研究表明&#xff0c…

大语言模型训练所需的最低显存,联邦大语言模型训练的传输优化技术

联邦大语言模型训练的传输优化技术 目录 联邦大语言模型训练的传输优化技术大语言模型训练所需的最低显存大语言模型训练所需的最低显存 基于模型微调、压缩和分布式并行处理的方法,介绍了相关开源模型及技术应用 核心创新点 多维度优化策略:综合运用基于模型微调、模型压缩和…

(CICD)自动化构建打包、部署(Jenkins + maven+ gitlab+tomcat)

一、平滑发布与灰度发布 **什么叫平滑&#xff1a;**在发布的过程中不影响用户的使用&#xff0c;系统不会因发布而暂停对外服务&#xff0c;不会造成用户短暂性无法访问&#xff1b; **什么叫灰度&#xff1a;**发布后让部分用户使用新版本&#xff0c;其它用户使用旧版本&am…

Python 科学计算

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;…

【pytorch】注意力机制-1

1 注意力提示 1.1 自主性的与非自主性的注意力提示 非自主性提示&#xff1a; 可以简单地使用参数化的全连接层&#xff0c;甚至是非参数化的最大汇聚层或平均汇聚层。 自主性提示 注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下&#xff0c;自主性提示被称为查…

Qt窗口获取Tftpd32_svc服务下载信息

前言 一个由Qt开发的Windows小工具需要布置Tftp协议服务端来支持设备下载数据&#xff0c;并显示下载列表&#xff08;进度、下载源等&#xff09;。 考虑开发方便&#xff0c;优先使用了Qtftp方案&#xff0c;经测试发现&#xff0c;不够稳定&#xff0c;会有下载超时的情况&a…

<OS 有关> DOS 批处理命令文件,用于创建 python 虚拟机,并进入虚拟机状态执行后继命令 判断虚拟机是否存在,在批处理文件中自定义 虚拟机名字

前言&#xff1a; 经常要敲重复的命令&#xff1a; python -m venv venv.\venv\Scripts\activate.bat (虽然能按 Tab 省几下&#xff0c;多了也烦恼&#xff0c;后来写了四行脚本 start.bat) DOS批处理 create_venv_start.bat 功能&#xff1a; 批处理显示支持中文在 creat…

【算法刷题】leetcode hot 100 哈希篇

文章目录 1. 两数之和49. 字母异位词分组128. 最长连续序列总结 1. 两数之和 leetcode&#xff1a;https://leetcode.cn/problems/two-sum/description/?envTypestudy-plan-v2&envIdtop-100-liked暴力解决&#xff1a; public int[] twoSum(int[] nums, int target) {for …

iOS 逆向学习 - iOS Architecture Cocoa Touch Layer

iOS 逆向学习 - iOS Architecture Cocoa Touch Layer 一、Cocoa Touch Layer 简介二、Cocoa Touch Layer 的核心功能1. UIKit2. Event Handling&#xff08;事件处理&#xff09;3. Multitasking&#xff08;多任务处理&#xff09;4. Push Notifications&#xff08;推送通知&…

网站常用功能模块-鉴权

一&#xff1a;JWT是什么&#xff1f; 常用鉴权方式有很多种&#xff0c;今天主要介绍基于token的鉴权方式JWT&#xff08;Json JSON Web Token&#xff09;。因为这种方式实现起来方便快捷。整体实现逻辑如下 第一次登陆时&#xff0c;前端携带账号和密码请求登录接口。服务…

stm32的掉电检测机制——PVD

有时在一些应用中&#xff0c;我们需要检测系统是否掉电了&#xff0c;或者要在掉电的瞬间需要做一些处理。 STM32内部自带PVD功能&#xff0c;用于对MCU供电电压VDD进行监控。 STM32就有这样的掉电检测机制——PVD(Programmable Voltage Detecter)&#xff0c;即可编程电压检…

Flink系列知识讲解之:深入了解 Flink 的网络协议栈

Flink系列知识之&#xff1a;深入了解 Flink 的网络协议栈 Flink 的网络协议栈是组成 flink-runtime 模块的核心组件之一&#xff0c;也是每个 Flink 任务的核心。它连接着来自所有任务管理器的各个工作单元&#xff08;子任务&#xff09;。这是流数据流过的地方&#xff0c;…

基于深度学习的视觉检测小项目(六) 项目的信号和变量的规划

• 关于前后端分离 当前流行的一种常见的前后端分离模式是vueflask&#xff0c;vueflask模式的前端和后端之间进行数据的传递通常是借助 API&#xff08;应用程序编程接口&#xff09;来完成的。vue通过调用后端提供的 API 来获取或提交数据。例如&#xff0c;前端可能通过发送…

党员学习交流平台

本文结尾处获取源码。 本文结尾处获取源码。 本文结尾处获取源码。 一、相关技术 后端&#xff1a;Java、JavaWeb / Springboot。前端&#xff1a;Vue、HTML / CSS / Javascript 等。数据库&#xff1a;MySQL 二、相关软件&#xff08;列出的软件其一均可运行&#xff09; I…

web实操9——session

概念 数据保存在服务器HttpSession对象里。 session也是域对象&#xff0c;有setAttribute和getAttribute方法 快速入门 代码 获取session和塞入数据&#xff1a; 获取session获取数据&#xff1a; 请求存储&#xff1a; 请求获取&#xff1a; 数据正常打印&#xff1a…

面向对象分析和设计OOA/D,UML,GRASP

目录 什么是分析和设计&#xff1f; 什么是面向对象的分析和设计&#xff1f; 迭代开发 UML 用例图 交互图 基于职责驱动设计 GRASP 常见设计原则 什么是分析和设计&#xff1f; 分析&#xff0c;强调是对问题和需求的调查研究&#xff0c;不是解决方案。例如&#x…

Nginx:限流限速

1. 什么是限流限速? 限流限速是Nginx运维中一个非常重要的功能,用于防止服务器过载和保护资源免受滥用。它可以通过限制客户端的请求速率或上传/下载速度来实现。 限流:控制单位时间内允许处理的请求数量。这有助于防止过多的并发请求导致服务器性能下降或崩溃。限速:限制…

探索 JMeter While Controller:循环测试的奇妙世界

嘿&#xff0c;宝子们&#xff01;今天咱们就来聊聊 JMeter 里超级厉害的 While 控制器&#xff0c;它就像是一把神奇的钥匙&#xff0c;能帮我们打开循环测试的大门&#xff0c;模拟出各种各样复杂又有趣的场景哦&#xff01; 一、While 控制器初印象 想象一下&#xff0c;你…

迈向AGI,3、2、1,2025上链接!

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 往期精彩文章推荐 关于AI TIME AI TIME源起于2019年&#xff0c;旨在发扬科学思辨精神&#xff0c;邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索&#xff0c;加强思想碰撞&#xff0c;链接全…