矩阵运算提速——玩转opencv::Mat

介绍:用Eigen或opencv::Mat进行矩阵的运算,比用cpp的vector或vector进行矩阵运算要快吗?

使用 Eigen 或 OpenCV 的 cv::Mat 进行矩阵运算通常比使用 std::vector<int>std::vector<double> 更快。这主要有以下几个原因:

  1. 优化的底层实现:Eigen 和 OpenCV 都是为高效的矩阵运算而设计的库,内部实现了许多优化,例如使用 SIMD(单指令多数据)指令、并行计算等。这些优化可以显著提高计算速度。

  2. 内存布局:Eigen 和 OpenCV 在内存布局上进行了优化,通常使用连续的内存块来存储矩阵数据,这样可以提高缓存命中率,从而加快访问速度。

  3. 专用的算法:这些库提供了许多专用的算法和函数,能够高效地执行常见的矩阵运算(如乘法、求逆、特征值分解等),而使用 std::vector 进行这些操作时,通常需要手动实现算法,效率较低。

  4. 类型安全和表达能力:Eigen 提供了强类型的矩阵和向量类,能够在编译时进行更多的检查,减少运行时错误,同时也使得代码更易于阅读和维护。

因此,如果你的应用涉及大量的矩阵运算,建议使用 Eigen 或 OpenCV 这样的专用库,而不是直接使用 std::vector

构造

link1

索引

访问Mat的通道数

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个3通道的彩色图像(例如,BGR格式)cv::Mat colorImage = cv::Mat::zeros(100, 100, CV_8UC3);// 创建一个单通道的灰度图像cv::Mat grayImage = cv::Mat::zeros(100, 100, CV_8UC1);// 获取通道数int colorChannels = colorImage.channels();int grayChannels = grayImage.channels();// 输出通道数std::cout << "彩色图像的通道数: " << colorChannels << std::endl; // 应该输出3std::cout << "灰度图像的通道数: " << grayChannels << std::endl;   // 应该输出1return 0;
}

定义4维Mat

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 定义4维矩阵,大小为2x3x4x5,数据类型为CV_32F(32位浮点数)cv::Mat mat4D(2, new int[4]{3, 4, 5}, CV_32F);// 填充矩阵for (int i = 0; i < 2; ++i) {for (int j = 0; j < 3; ++j) {for (int k = 0; k < 4; ++k) {for (int l = 0; l < 5; ++l) {mat4D.at<float>(i, j, k, l) = static_cast<float>(i * 1000 + j * 100 + k * 10 + l);}}}}// 输出矩阵的形状和内容std::cout << "4维矩阵的大小: " << mat4D.size << std::endl;std::cout << "4维矩阵的内容:" << std::endl;for (int i = 0; i < 2; ++i) {for (int j = 0; j < 3; ++j) {for (int k = 0; k < 4; ++k) {for (int l = 0; l < 5; ++l) {std::cout << mat4D.at<float>(i, j, k, l) << " ";}std::cout << std::endl;}std::cout << std::endl;}}// 释放动态分配的内存delete[] mat4D.size;return 0;
}

取某一行

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个 3x3 的矩阵cv::Mat mat = (cv::Mat_<float>(3, 3) << 1, 2, 3,4, 5, 6,7, 8, 9);// 获取第 3 行(索引为 2)的所有元素cv::Mat thirdRow = mat.row(2); // 行索引从 0 开始// 输出结果std::cout << "第三行的元素是:" << std::endl;std::cout << thirdRow << std::endl;return 0;
}

提取块

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个 5x5 的矩阵cv::Mat mat = (cv::Mat_<float>(5, 5) << 1, 2, 3, 4, 5,6, 7, 8, 9, 10,11, 12, 13, 14, 15,16, 17, 18, 19, 20,21, 22, 23, 24, 25);// 定义要提取的块的起始位置和大小int startRow = 1; // 起始行索引int startCol = 1; // 起始列索引int blockRows = 3; // 块的行数int blockCols = 3; // 块的列数// 提取块cv::Mat block = mat(cv::Range(startRow, startRow + blockRows), cv::Range(startCol, startCol + blockCols));// 输出结果std::cout << "提取的块是:" << std::endl;std::cout << block << std::endl;return 0;
}

访问某行某列的元素

在C++中,使用OpenCV库的cv::Mat类来表示图像或矩阵。要访问cv::Mat中的特定行和列的元素,可以使用at(row, col)方法,其中type是元素的数据类型。

#include <iostream>
#include <opencv2/opencv.hpp>int main() {// 创建一个3x3的矩阵,类型为CV_8UC1(单通道8位无符号整数)cv::Mat mat = (cv::Mat_<uchar>(3, 3) << 1, 2, 3,4, 5, 6,7, 8, 9);// 输出整个矩阵std::cout << "矩阵内容:\n" << mat << std::endl;// 访问特定行和列的元素int row = 1; // 第二行(索引从0开始)int col = 2; // 第三列(索引从0开始)// 使用at方法访问元素uchar value = mat.at<uchar>(row, col);std::cout << "元素在 (" << row << ", " << col << ") 的值: " << (int)value << std::endl;// 修改特定行和列的元素mat.at<uchar>(row, col) = 10;std::cout << "修改后的矩阵内容:\n" << mat << std::endl;return 0;
}

示例输出:

矩阵内容:
[1, 2, 3;
4, 5, 6;
7, 8, 9]
元素在 (1, 2) 的值: 6
修改后的矩阵内容:
[1, 2, 3;
4, 5, 10;
7, 8, 9]

运算

矩阵乘法和Hamornoid积

#include <iostream>
#include <opencv2/opencv.hpp>int main() {// 创建两个相同维度的矩阵cv::Mat mat1 = (cv::Mat_<float>(2, 2) << 1, 2,3, 4);cv::Mat mat2 = (cv::Mat_<float>(2, 2) << 5, 6,7, 8);// 输出原始矩阵std::cout << "矩阵1:\n" << mat1 << std::endl;std::cout << "矩阵2:\n" << mat2 << std::endl;// 方法1:使用 cv::multiplycv::Mat result1;cv::multiply(mat1, mat2, result1);std::cout << "矩阵乘法 (使用 cv::multiply):\n" << result1 << std::endl;// 方法2:使用 cv::mulcv::Mat result2 = mat1.mul(mat2); // 也可以使用 result2 = mat1 * mat2;std::cout << "矩阵乘法 (使用运算符 *):\n" << result2 << std::endl;// 方法3:使用运算符 *cv::Mat result3 = mat1*mat2; // 也可以使用 result2 = mat1 * mat2;std::cout << "逐元素相乘结果 (使用运算符 *):\n" << result3 << std::endl;return 0;
}

类型一致

  • opencv::Mat之间的加减乘除必须保证类型相同
  • 比如cv::divide()运算
cv::divide(new_cen, cen_index[cen_id].size(), new_cen);
  • opencv::Mat的类型有如下几种:
    在这里插入图片描述* 可在初始化时指定
	Mat new_cen=Mat::zeros(1,128,CV_32FC1);

opencv::Mat是继承Eigen的实现吗?

cv::Mat并不是继承自Eigen库的实现。OpenCV和Eigen是两个独立的库,它们各自有自己的数据结构和实现方式。

OpenCV的cv::Mat

  • cv::Mat是OpenCV中用于表示图像和矩阵的主要数据结构。它提供了多种功能,包括图像处理、矩阵运算、图像读取和写入等。
  • cv::Mat支持多维数组,能够处理不同的数据类型(如8位无符号整数、浮点数等),并且可以表示单通道和多通道图像(如RGB图像)。
  • OpenCV的设计目标是高效处理图像和视频数据,特别是在计算机视觉和图像处理领域。

Eigen库:

  • Eigen是一个用于线性代数的C++模板库,提供了矩阵和向量的高效操作。它专注于数学运算,特别是线性代数、几何变换和数值计算。
  • Eigen的设计目标是提供高性能的数学运算,同时保持易用性和灵活性。

结论:

虽然OpenCV和Eigen都涉及矩阵和线性代数的概念,但它们是独立的库,cv::Mat并不继承自Eigen的实现。实际上,OpenCV和Eigen可以一起使用,开发者可以在OpenCV中处理图像数据,然后使用Eigen进行更复杂的数学运算,或者反之亦然。两者之间的结合可以利用各自的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/66241.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yolo小damo合集

效果如下&#xff1a;这个是图片检测 效果如下&#xff1a;这个是视频检测 效果如下&#xff1a;这个是摄像头检测 1 相关库 除了yolov11所用库之外&#xff0c;本文所用到的额外库为pyqt5&#xff0c;输入指令进行安装 pip install pyqt5 导入所需要的库 import sys fro…

【蓝桥杯研究生组】第14届Java试题答案整理

试题链接&#xff1a;链接 A题 满足条件的答案有&#xff1a;35813116 public class TianShu {public static void main(String[] args) {int ans 0;// 2000.1.1 - 2000000.1.1// 年份是月份的倍数&#xff0c;也是日的倍数for (int year2000; year<2000000; year) {for …

基于Java的超级玛丽游戏的设计与实现【源码+文档+部署讲解】

目 录 1、绪论 1.1背景以及现状 1.2 Java语言的特点 1.3 系统运行环境及开发软件&#xff1a; 1.4 可行性的分析 1.4.1 技术可行性 1.4.2 经济可行性 1.4.3 操作可行性 2、 需求分析 2.1 用户需求分析 2.2功能需求分析 2.3界面设计需求分析…

25考研王道数据机构课后习题-----顺序表链表部分

文章目录 1.顺序表题目2.链表相关题目3.我的个人总结 声明&#xff1a;以下内容来自于B站知名up主白话拆解数据结构&#xff0c;望获悉&#xff1b; 1.顺序表题目 下面的这个说的是&#xff1a;下面的哪一个是组成我们的顺序表的有限序列&#xff0c;这个应该是数据元素&#x…

LLM - 使用 LLaMA-Factory 部署大模型 HTTP 多模态服务 (4)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/144881432 大模型的 HTTP 服务&#xff0c;通过网络接口&#xff0c;提供 AI 模型功能的服务&#xff0c;允许通过发送 HTTP 请求&#xff0c;交互…

学英语学压测:02jmeter组件-测试计划和线程组ramp-up参数的作用

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#xff1a;先看关键单词&#xff0c;再看英文&#xff0c;最后看中文总结&#xff0c;再回头看一遍英文原文&#xff0c;效果更佳&#xff01;&#xff01; 关键词 Functional Testing功能测试[ˈfʌŋkʃənəl ˈtɛstɪŋ]Sample样…

多线程访问FFmpegFrameGrabber.start方法阻塞问题

一、背景 项目集成网络摄像头实现直播功能需要用到ffmpeg处理rtmp视频流进行web端播放 通过网上资源找到大神的springboot项目实现了rtmp视频流转为http请求进行视频中转功能&#xff0c;其底层利用javacv的FFmpegFrameGrabber进行拉流、推流&#xff0c;进而实现了视频中转。 …

医学图像分析工具01:FreeSurfer || Recon -all 全流程MRI皮质表面重建

FreeSurfer是什么 FreeSurfer 是一个功能强大的神经影像学分析软件包&#xff0c;广泛用于处理和可视化大脑的横断面和纵向研究数据。该软件由马萨诸塞州总医院的Martinos生物医学成像中心的计算神经影像实验室开发&#xff0c;旨在为神经科学研究人员提供一个高效、精确的数据…

OKHttp调用第三方接口,响应转string报错okhttp3.internal.http.RealResponseBody@4a3d0218

原因分析 通过OkHttp请求网络&#xff0c;结果请求下来的数据一直无法解析并且报错&#xff0c;因解析时String res response.body().toString() 将toString改为string即可&#xff01;

oceanbase集群访问异常问题处理

1.报错现象 2.问题排查 检查obproxy状态发现为不可用状态 重启obproxy 依次重启Obproxy集群 观察任务状态 重启完成 Obproxy状态正常 3.验证登录 登录成功

ruckus R510升级到Unleashe后不能访问

ruckus R510 是IPQ4019&#xff0c;升级到Unleashe&#xff0c;它弹窗提示 但是这个IP没办法用&#xff0c;访问不了AP。 必应了一下&#xff0c;官方提示用advance ip scanner扫描。 扫描持续好久&#xff0c;发现IP竟然是从主路由获得。 9090的端口不用填&#xff0c;甚至不…

使用R语言绘制标准的中国地图和世界地图

在日常的学习和生活中&#xff0c;有时我们常常需要制作带有国界线的地图。这个时候绘制标准的国家地图就显得很重要。目前国家标准地图服务系统向全社会公布的标准中国地图数据&#xff0c;是最权威的地图数据。 今天介绍的R包“ggmapcn”&#xff0c;就是基于最新公布的地图…

linux上安装MySQL教程

1.准备好MySQL压缩包&#xff0c;并进行解压 tar -xvf mysql-5.7.28-1.el7.x86_64.rpm-bundle.tar -C /usr/local 2.检查是否有mariadb数据库 rpm -aq|grep mariadb 关于mariadb:是MySQL的一个分支&#xff0c;主要由开源社区在维护&#xff0c;采用GPL授权许可 MariaDB的目…

计算机网络基础(7)中科大郑铨老师笔记

应用层 目标&#xff1a;  网络应用的 原理&#xff1a;网络应用协议的概念和实现方面 传输层的服务模型 客户-服务器模式 对等模式(peerto-peer) 内容分发网络  网络应用的 实例&#xff1a;互联网流行的应用层协 议  HTTP  FTP  SMTP / POP3 / IMAP  DNS…

Spring源码分析之事件机制——观察者模式(二)

目录 获取监听器的入口方法 实际检索监听器的核心方法 监听器类型检查方法 监听器的注册过程 监听器的存储结构 过程总结 Spring源码分析之事件机制——观察者模式&#xff08;一&#xff09;-CSDN博客 Spring源码分析之事件机制——观察者模式&#xff08;二&#xff…

CSS——4. 行内样式和内部样式(即CSS引入方式)

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>方法1&#xff1a;行内样式</title></head><body><!--css引入方式&#xff1a;--><!--css的引入的第一种方法叫&#xff1a;行内样式将css代码写…

python之移动端测试---appium

Appium Appium介绍环境准备新版本appium的用法介绍元素定位函数被封装&#xff0c;统一使用By.xxx(定位方式)&#xff1a;通过文本定位的写法 一个简单的请求示例APP操作api基础apk安装卸载发送&#xff0c;拉取文件uiautomatorviewer工具使用获取页面元素及属性模拟事件操作模…

剑指Offer|LCR 021. 删除链表的倒数第 N 个结点

LCR 021. 删除链表的倒数第 N 个结点 给定一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5]示例 2&#xff1a; 输入&#xff1a;head [1], n 1…

基于物联网疫苗冷链物流监测系统设计

1. 项目开发背景 随着全球对疫苗运输要求的提高&#xff0c;特别是针对温度敏感型药品&#xff08;如疫苗&#xff09;的冷链管理&#xff0c;如何保证疫苗在运输过程中的温度、湿度、震动等环境因素的稳定性已成为亟需解决的问题。疫苗运输过程中&#xff0c;任何温度或湿度的…

软件逆向之标志位

进位标志CF&#xff08;Carry Flag&#xff09; 介绍&#xff1a;如果运算结果的最高位产生了一个进位&#xff08;加法&#xff09;或借位&#xff08;减法&#xff09;&#xff0c;那么&#xff0c;其值为1&#xff0c;否则其值为0。无符号数。 示例&#xff1a; mov al&…