大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的正则化方法。
文章目录
- 正则化
- L1 正则化(Lasso)
- 原理
- 使用场景
- 优缺点
- L2 正则化(Ridge)
- 原理
- 使用场景
- 优缺点
- Elastic Net 正则化
- 定义
- 公式
- 优点
- 缺点
- 应用场景
- Dropout
- 原理
- 使用场景
- 优缺点
- 早停法(Early Stopping)
- 原理
- 使用场景
- 优缺点
- Batch Normalization (BN)
- 原理
- 使用场景
- 优点
- 缺点
- 权重衰减(Weight Decay)
- 原理
- 使用场景
- 优点
- 缺点
- 剪枝(Pruning)
- 原理
- 应用场景
- 优点
- 缺点
正则化
L1 正则化(Lasso)
原理
L1正则化通过在损失函数中加入权重的绝对值和来约束模型复杂度。其目标函数为:
min ( 1 2 m ∑ i = 1 m ( y i − y ^ i ) 2 + λ ∑ j = 1 n ∣ w j ∣ ) \min \left( \frac{1}{2m} \sum_{i = 1}^m (y_i - \hat{y}_i)^2 + \lambda \sum_{j = 1}^n |w_j| \right) min(2m1i=1∑m(yi−y^i)2+λj=1∑n∣wj∣)
- 其中,λ是正则化强度,( w_j )是第j个特征的权重。
使用场景
- 特征选择:L1 正则化能够将部分不重要的特征权重缩减为 0,从而实现特征选择。
- 高维稀疏数据集:如基因数据分析,模型能够自动去除无关特征。
优缺点
- 优点:生成稀疏解,易于解释,自动选择重要的特征。
- 缺点:对特征高度相关的数据,随机选择特征,模型不稳定。
L2 正则化(Ridge)
原理
L2正则化通过在损失函数中加入权重的平方和来约束模型复杂度。其目标函数为:
min ( 1 2 m ∑ i = 1 m ( y i − y ^ i ) 2 + λ ∑ j = 1 n w j 2 ) \min \left( \frac{1}{2m} \sum_{i = 1}^m (y_i - \hat{y}_i)^2 + \lambda \sum_{j = 1}^n w_j^2 \right) min(2m1i=1∑m(yi−y^i)2+λj=1∑nwj2)
- 其中,λ是正则化强度, w j w_j wj是第j个特征的权重。
使用场景
- 多重共线性问题:在特征间存在多重共线性的情况下,L2 正则化能够减小模型方差,防止模型对数据的过拟合。
- 回归任务:如岭回归(Ridge Regression)中常用来提升模型鲁棒性。
优缺点
- 优点:防止模型过拟合,能有效处理特征多重共线性问题。
- 缺点:不能进行特征选择,所有特征权重都被减小。
Elastic Net 正则化
定义
Elastic Net 是 L1 和 L2 正则化的结合,它同时引入了 L1 和 L2 正则化项,在获得稀疏解的同时,保持一定的平滑性。
公式
J ElasticNet ( θ ) = J ( θ ) + λ 1 ∑ i ∣ θ i ∣ + λ 2 ∑ i θ i 2 J_{\text{ElasticNet}}(\theta) = J(\theta) + \lambda_1 \sum_i |\theta_i| + \lambda_2 \sum_i \theta_i^2 JElasticNet(θ)=J(θ)+λ1i∑∣θi∣+λ2i∑θi2
其中, λ 1 \lambda_1 λ1和 λ 2 \lambda_2 λ2控制L1和L2正则化的权重。
优点
- 结合了 L1 和 L2 正则化的优点,既能够稀疏化模型,又不会完全忽略相关性特征。
- 对高维数据和特征之间存在高度相关性的数据表现良好。
缺点
- 相比于单独使用 L1 或 L2 正则化,它有更多的超参数需要调节。
应用场景
- 常用于具有高维特征的数据集,特别是在需要稀疏化的同时,又不希望完全丢失特征之间相关性的信息。
Dropout
原理
Dropout 是一种用于深度神经网络的正则化方法。训练过程中,Dropout 随机将部分神经元的输出设置为 0,防止神经元对特定特征的依赖,从而提升模型的泛化能力。类似集成学习,每次生成的都不一样。丢弃概率 (p),通常设置为 0.2 到 0.5。
使用场景
- 深度神经网络:在深度学习中广泛应用,如卷积神经网络(CNN)、循环神经网络(RNN)等。
- 避免过拟合:尤其在模型复杂、训练数据较少的场景中,能够有效降低过拟合风险。
优缺点
- 优点:有效防止过拟合,提升模型鲁棒性。
- 缺点:训练时间较长,推理过程中不适用。
早停法(Early Stopping)
原理
早停法是一种防止模型过拟合的策略。在训练过程中,监控验证集的误差变化,当验证集误差不再降低时,提前停止训练,防止模型过拟合到训练数据。
使用场景
- 深度学习:几乎适用于所有深度学习模型,在神经网络训练中常用,防止训练过度拟合。
- 梯度下降优化:在任何基于梯度下降的优化过程中均可使用,如线性回归、逻辑回归等。
优缺点
- 优点:简单有效,能够动态调节训练过程。
- 缺点:需要合理设置停止条件,可能导致模型欠拟合。
Batch Normalization (BN)
虽然 Batch Normalization(BN)通常被认为是一种加速训练的技巧,但它也有正则化的效果。BN 通过对每一批次的输入进行归一化,使得模型训练更加稳定,防止过拟合。
原理
BN 通过将每个批次的激活值标准化为均值为 0,方差为 1,然后通过可学习的缩放和平移参数恢复特征分布。由于批次间的变化引入了一定的噪声,这对模型有一定的正则化作用。
使用场景
- 广泛应用于卷积神经网络(CNN)和全连接网络(FCN)中。
优点
- 提升训练速度,并有一定的正则化效果。
- 适合卷积神经网络和全连接神经网络,能有效减少过拟合。
缺点
- 在小批量训练时效果不稳定。
- 引入了额外的计算开销。
权重衰减(Weight Decay)
权重衰减是一种通过直接对权重进行衰减的正则化方法,它等价于 L2 正则化。
原理
在每次权重更新时,加入一个权重衰减项,使得权重参数逐渐减小,从而防止权重变得过大,减少模型的复杂度。
权重衰减直接在梯度更新中对权重施加一个额外的缩减项,而不需要在损失函数中添加正则化项。也就是说,权重衰减是通过直接操作梯度更新公式中的权重来实现的。
公式:
θ = θ − α ⋅ ∂ L data ∂ θ − α λ θ \theta = \theta - \alpha \cdot \frac{\partial L_{\text{data}}}{\partial \theta} - \alpha \lambda \theta θ=θ−α⋅∂θ∂Ldata−αλθ
- 其中:
- α是学习率。
- λ是权重衰减系数。
- θ是模型的权重。
λ 是正则化系数,控制惩罚项的强度。该惩罚项会在每次梯度更新时对权重施加一个减小的力度,从而限制权重的增长。
L2正则化和权重衰减目标一致、数学形式相似,但是并不是同一种手段:
- 实现方式:
- L2 正则化:在传统的 L2 正则化中,惩罚项是直接添加在损失函数中。因此,反向传播时会计算这个惩罚项的梯度,并将它加入到权重的更新中。优化器仅对
Loss
求导。- 权重衰减:在权重衰减中,惩罚项不直接添加到损失函数中,而是在梯度更新时作为一个附加的“权重缩小”操作。在每次更新时,优化器会自动将权重按比例缩小。例如,对于SGD 优化器,权重更新公式变成:
w = w − α ⋅ ∂ L loss ∂ w − α ⋅ λ ⋅ w w = w - \alpha \cdot \frac{\partial L_{\text{loss}}}{\partial w} - \alpha \cdot \lambda \cdot w w=w−α⋅∂w∂Lloss−α⋅λ⋅w
这里, α ⋅ λ ⋅ w \alpha \cdot \lambda \cdot w α⋅λ⋅w是直接对权重施加的缩小因子,而不影响梯度方向。
- 优化器依赖:
- L2 正则化:不依赖于特定的优化器。正则项直接通过损失函数梯度传播,适用于所有优化器。
- 权重衰减:有些优化器(如 AdamW)在实现时将权重衰减项独立处理,而不会将其纳入损失的反向传播中。
使用场景
- 与 SGD 等优化器配合使用效果较好,尤其适用于大型神经网络,可以防止权重过大导致的过拟合。对于 Adam 优化器,建议使用 AdamW 版本来获得更合适的权重衰减效果。
优点
- 类似于 L2 正则化,简单易用,有效减少过拟合。
缺点
- 与 L2 正则化非常相似,但在某些优化器(如 Adam)中,权重衰减的实现可能会与 L2 正则化略有不同。在这些情况下,直接使用 L2 正则化可能会更符合预期的效果。
剪枝(Pruning)
剪枝通常在模型训练完成后进行,作为一种后处理技术。例如决策树中的剪枝操作。
原理
剪枝通过删除神经网络中重要性较低的连接或神经元,减少模型规模,从而达到简化网络的目的。剪枝不仅可以减少计算量和存储需求,还能在一定程度上防止过拟合,使模型在推理时更加高效。
应用场景
- 移动和嵌入式设备:剪枝特别适用于资源受限的设备(如手机、嵌入式系统、物联网设备)上,以减小模型尺寸和降低推理时间。
- 深度学习模型加速:剪枝广泛用于加速深度神经网络的推理过程,特别是在需要实时处理的任务中,如自动驾驶、图像识别等。
- 大规模模型压缩:在大规模模型(如大规模卷积神经网络、语言模型)中,剪枝可以显著减少计算量,使得模型更高效地运行。
优点
- 减少模型复杂度:剪枝可以显著减少网络中的参数,降低计算和内存需求,使得模型更适合在资源有限的设备上(如移动设备、嵌入式系统)运行。
- 提高模型的泛化能力:通过移除不重要的权重和神经元,减少模型对特定数据特征的过拟合,从而提高泛化能力。
- 加速推理:剪枝后的模型由于参数减少,推理速度得到显著提升。
缺点
- 需要额外的剪枝步骤
- 可能影响模型性能:如果剪枝不当,可能会削弱模型的表现,模型的准确性可能会大幅下降。
- 需要重新训练:剪枝后的模型有时需要重新微调或训练,以恢复模型性能。
以下是关于常见正则化方法的总结表格:
正则化方法 | 原理 | 使用场景 | 优点 | 缺点 |
---|---|---|---|---|
L1 正则化 (Lasso) | 通过增加权重绝对值惩罚项,实现特征稀疏化,部分权重缩减为 0。 | 高维稀疏数据集,特征选择任务。 | 生成稀疏解,易于解释,自动选择重要的特征。 | 对特征高度相关的数据,可能随机选择特征,导致模型不稳定。 |
L2 正则化 (Ridge) | 通过增加权重平方和惩罚项,减小权重大小,防止权重过大。 | 多重共线性问题、回归任务,如岭回归。 | 防止模型过拟合,处理特征多重共线性问题,模型更加鲁棒。 | 无法进行特征选择,所有特征权重都被减小。 |
Elastic Net 正则化 | L1 和 L2 正则化结合,既稀疏化模型,又保留相关性特征。 | 高维特征的数据集,稀疏化和相关性特征共存的场景。 | 结合 L1 和 L2 优点,稀疏化与平滑化并存,适用于高维数据。 | 增加了超参数调节的复杂性。 |
Dropout | 训练时随机丢弃部分神经元输出,防止神经元对特定特征的依赖,提升泛化能力。 | 深度神经网络,CNN、RNN,适合复杂模型或数据较少的场景。 | 有效防止过拟合,提升模型鲁棒性。 | 训练时间较长,推理时不适用。 |
早停法 (Early Stopping) | 监控验证集误差,验证集误差不再下降时提前停止训练,防止过拟合。 | 深度学习模型,梯度下降优化任务,如线性回归、逻辑回归。 | 简单有效,动态调节训练过程,减少过拟合。 | 需要合理设置停止条件,可能导致欠拟合。 |
Batch Normalization (BN) | 对每一批次的输入进行归一化,保持训练过程中的稳定性,并有一定正则化效果。 | 卷积神经网络和全连接神经网络,适用于大批量训练。 | 加速训练,减少过拟合,提升模型稳定性。 | 小批量训练时效果不稳定,增加计算开销。 |
权重衰减 (Weight Decay) | 在每次权重更新时加入权重衰减项,防止权重过大,等价于 L2 正则化。 | 大规模神经网络,常与 SGD、AdamW 等优化器配合使用。 | 简单有效,减少过拟合,类似 L2 正则化。 | 与 L2 略有不同,某些优化器中的效果不同。 |
剪枝 (Pruning) | 训练后移除神经网络中不重要的连接或神经元,减少模型规模,降低计算量,提升泛化能力。 | 移动设备、嵌入式系统、大规模模型压缩,适合资源受限设备和加速任务。 | 减少模型复杂度,提升推理速度,适合资源受限设备。 | 需要额外剪枝步骤,可能影响模型性能,需要重新训练。 |
这个表格总结了常见的正则化方法,涵盖了其工作原理、使用场景、优点和缺点。根据具体任务和数据集,可以选择合适的正则化方法来提高模型的泛化能力和训练效率。