概率论得学习和整理27:关于离散的数组 随机变量数组的均值,方差的求法3种公式,思考和细节。

目录

1 例子1:最典型的,最简单的数组的均值,方差的求法

2 例子1的问题:例子1只是1个特例,而不是普遍情况。

2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。

2.2 我觉得 加权平均值公式,比平均值的原始公式Σxi/n 更为普适性

2.3 后面引入随机变量,更是解决了部分 无穷数组 求均值,方差的问题 

2.4 学习顺序的错位

2.3 学习内容的缺失

3 对例子1更一般的均值求法:加权平均值的求法

4 用加权法求会不会多此一举?

5  例子2:对于非等概率的数组,用加权法求均值和方差

(例子1毕竟是特例,不如加权求法更普适性)

5.0 非等概率的数组

5.1 针对非等权重的数组,求均值

5.2 针对非等权重的数组,求方差,就必须用权重了

6 从一般性的数组,再到随机变量数组

6.1 什么是随机变量数组

6.2 随机变量的均值计算,均值=数学期望

6.3 随机变量的方差计算

7.4 VAR=E(Xi^2) - E(Xi)^2特殊公式的含义,别用错了

7 例子3: 计算随机变量数组的均值和方差

7.1 丢1次骰子的随机变量和对应概率/权重

7.2 丢2次骰子的随机变量和对应概率/权重

7.3 这2个随机变量的均值,方差的计算


1 例子1:最典型的,最简单的数组的均值,方差的求法

  • 对象:一个数组
  • 均值:Average=ΣXi*/N = sum/ count
  • 离差:(Xi-A)           # 离差,比较的是每个数列里的值与特定值如均值的差!距离差!
  • 离差和:Σ(Xi-A)
  • 离差和:Σ(Xi-A)
  • 离差平方和:Σ(Xi-A)^2
  • 方差:Σ(Xi-A)^2/N

具体到这个例子里

  • Average=21/6=3.5
  • Var= δ^2=2.917

2 例子1的问题:例子1只是1个特例,而不是普遍情况。

2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。

  • 数组1,2,3,4,5,6 
  • 特殊性1:只有6个数
  • 特殊性2:默认等概率分布
  • 特殊性3:求均值,没引入权重概念,只是直接 /n, 默认了等权重
  • 特殊性4:求方差,也是直接用的/n, 默认了等权重

2.2 我觉得 加权平均值公式,比平均值的原始公式Σxi/n 更为普适性

我觉得 加权平均值,比  Σxi/n 更为普适性

特殊性3:求均值,没引入权重概念,只是直接 /n, 默认了等权重

这个地方我需要详细解释一下

比如1个数组,

1,2,3,4,5,6 ....100, 理论上,全部相加 Σxi/n 也没错,是最底层的计算均值思路和公式

但是

很多时候,我们的数组里,有多个数是重复出现的,

1,2,3,4,5,6,1,2,3,4,5,6,...5,6,100  (可能远大于100)

我们可能需要统计频度数, 频度=权重

从而用加权平均值的计算方法

比如 1*w1+2w2+.....6*w3+100*w100

所以我觉得,加权平均数,是比这种 等权重平均数更一般的情况

即使是1,2,3,4,5,6 ....100, 理论上,全部相加 Σxi/n 也没错 ,也可以强行认为他们的权重相等都是1/n,所以我觉得 加权平均值,比  Σxi/n 更为普适性

2.3 后面引入随机变量,更是解决了部分 无穷数组 求均值,方差的问题 

另外往下引申一下

为什么要有随机变量,那也是因为数组除了重复,有点乱,还可能无穷。对于无穷数组其实不好计算。但是如果从概率的思路,把概率当成权重,其实可以计算无穷数组。

所以,我觉得 随机变量数组---对比 普通数组,是可以部分解决无穷数组的问题的!

即使是一个无穷数组,只要可以知道每个 具体数对于的概率,可以计算均值,方差等!这样就用概率,绕过了无穷计算这个问题!

2.4 学习顺序的错位

  • 其实,我们应该先学习一般规律,再学习
  • 也许教小学生可以这么教,先用特殊好懂的入门。但是即使这样,也应该把一般性的情况要讲,至少明白,这个东西是有很大局限性的。

2.3 学习内容的缺失

  • 更不好的是,完全不学,不了解,一般化的均值,方差的求法
  • 如果只会求这种 硬来的公式
  • 完全不理解 加权平均值的思路,遇到有频度的数据,就无法处理。
  • 甚至后面也无法理解,随机变量的均值的求法。

3 对例子1更一般的均值求法:加权平均值的求法

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N
  • 定义公式求方差:Σ(Xi -均值)^2 / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi
  • 加权法求方差:Σ(Xi -均值)^2 *Wi

可以看到,两种方法的求得均值,方差都相等。

4 用加权法求会不会多此一举?

不会,看下面的例子

5  例子2:对于非等概率的数组,用加权法求均值和方差

(例子1毕竟是特例,不如加权求法更普适性)

5.0 非等概率的数组

  • 还是一个普通数组,但是是 1,1,3,4,5,6 
  • 其中 1出现2次,没有2
  • 可以转化为频度数组,1,3,4,5,6 对应频度分别是2,1,1,1,1

5.1 针对非等权重的数组,求均值

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi

都好用

比如1的频度为8,就相当于是8个1,即1,1,1,1,1,1,1,1

5.2 针对非等权重的数组,求方差,就必须用权重了

方法1:  用原始公式求

  • 定义公式求方差:Σ(Xi -均值)^2 / N   这样是错误的

方法2:用加权法求

  • 加权法求方差:Σ(Xi -均值)^2 *Wi

只能用加权法求方差了

6 从一般性的数组,再到随机变量数组

6.1 什么是随机变量数组

随机变量数组,就是 频度=权重=概率的,一个特殊数组

随机变量数组,可以应对部分无穷的数组的计算

6.2 随机变量的均值计算,均值=数学期望

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi
  • 随机变量的数学期望 =均值   ΣXi *Wi =ΣXi *Pi

6.3 随机变量的方差计算

方法1:  用原始公式求(错误,不能这么求)

  • 定义公式求方差:Σ(Xi -均值)^2 / N  ,没办法这么求

方法2:用加权法求

  • 加权法求方差:Σ(Xi -均值)^2 *Wi
  • 实际上,因为Wi =Pi
  • 加权法求方差, 就是随机变量的均值公式:Σ(Xi -均值)^2 *Wi =Σ(Xi -均值)^2 *Pi
  • 公式继续变形
  • :Σ(Xi -均值)^2 *Wi =Σ(Xi -均值)^2 *Pi = E((Xi -均值)^2)= E((Xi -E(X))^2)

方法3:用2个随机变量数组的均值的差的一个变形公式

  • 随机变量的方差:VAR=Σ(Xi -均值)^2 *Pi  (形式上ΣYi*Pi =E(Y))
  • 随机变量的方差:VAR=E((Xi -E(X))^2)
  • 随机变量的方差:VAR=E(Xi^2) - E(Xi)^2
  • 这个可以推导处理出来的

7.4 VAR=E(Xi^2) - E(Xi)^2特殊公式的含义,别用错了

核心意义: 用均值可以计算方差!

知道均值了就能知道方差!

核心意义,用2个数组的均值,可以计算1个数组的方差!

  • 随机变量的方差:VAR=E(Xi^2) - E(Xi)^2
  • step1: 先生成1个新的随机变量数组,Xi^2
  • step2: 计算E(Xi^2)
  • step3: 用老的xi数组,计算E(X) ,再计算E(X)^2
  • step4: 两者相减=方差, VAR=E(Xi^2)- E(X)^2

7 例子3: 计算随机变量数组的均值和方差

7.1 丢1次骰子的随机变量和对应概率/权重

7.2 丢2次骰子的随机变量和对应概率/权重

7.3 这2个随机变量的均值,方差的计算

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/64502.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【HarmonyOS NEXT】Web 组件的基础用法以及 H5 侧与原生侧的双向数据通讯

关键词:鸿蒙、ArkTs、Web组件、通讯、数据 官方文档Web组件用法介绍:文档中心 Web 组件加载沙箱中页面可参考我的另一篇文章:【HarmonyOS NEXT】 如何将rawfile中文件复制到沙箱中_鸿蒙rawfile 复制到沙箱-CSDN博客 目录 如何在鸿蒙应用中加…

ASP.NET Core - 依赖注入 自动批量注入

依赖注入配置变形 随着业务的增长,我们项目工作中的类型、服务越来越多,而每一个服务的依赖注入关系都需要在入口文件通过Service.Add{}方法去进行注册,这将是非常麻烦的,入口文件需要频繁改动,而且代码组织管理也会变…

Spring Boot 3.X:Unable to connect to Redis错误记录

一.背景 最近在搭建一个新项目,本着有新用新的原则,项目选择到了jdk17SpringBoot3.4。但是在测试Redis连接的时候却遇到了以下问题: redis连不上了。于是我先去检查了配置文件的连接信息,发现没问题;再去检查配置类&am…

FFmpeg第一话:FFmpeg 简介与环境搭建

FFmpeg 探索之旅 一、FFmpeg 简介与环境搭建 二、FFmpeg 解码详解 第一话:FFmpeg 简介与环境搭建 FFmpeg 探索之旅一、前言二、FFmpeg 是什么?三、简单介绍其历史背景四、为什么用 C学习 FFmpeg?(一)高性能优势&#…

(vue)el-table在表头添加筛选功能

(vue)el-table在表头添加筛选功能 筛选前&#xff1a; 选择条件&#xff1a; 筛选后&#xff1a; 返回数据格式: 代码: <el-tableref"filterTable":data"projectData.list"height"540":header-cell-style"{border-bottom: 1px soli…

流程引擎Activiti性能优化方案

流程引擎Activiti性能优化方案 Activiti工作流引擎架构概述 Activiti工作流引擎架构大致分为6层。从上到下依次为工作流引擎层、部署层、业务接口层、命令拦截层、命令层和行为层。 基于关系型数据库层面优化 MySQL建表语句优化 Activiti在MySQL中创建默认字符集为utf8&…

Vue3源码笔记阅读1——Ref响应式原理

本专栏主要用于记录自己的阅读源码的过程,希望能够加深自己学习印象,也欢迎读者可以帮忙完善。接下来每一篇都会从定义、运用两个层面来进行解析 定义 运用 例子:模板中访问ref(1) <template><div>{{str}}</div> </template> <script> impo…

神经网络基础-神经网络搭建和参数计算

文章目录 1.构建神经网络2. 神经网络的优缺点 1.构建神经网络 在 pytorch 中定义深度神经网络其实就是层堆叠的过程&#xff0c;继承自nn.Module&#xff0c;实现两个方法&#xff1a; __init__方法中定义网络中的层结构&#xff0c;主要是全连接层&#xff0c;并进行初始化。…

Dcoker Redis哨兵模式集群介绍与搭建 故障转移 分布式 Java客户端连接

介绍 Redis 哨兵模式&#xff08;Sentinel&#xff09;是 Redis 集群的高可用解决方案&#xff0c;它主要用于监控 Redis 主从复制架构中的主节点和从节点的状态&#xff0c;并提供故障转移和通知功能。通过 Redis 哨兵模式&#xff0c;可以保证 Redis 服务的高可用性和自动故…

机器学习之交叉熵

交叉熵&#xff08;Cross-Entropy&#xff09;是机器学习中用于衡量预测分布与真实分布之间差异的一种损失函数&#xff0c;特别是在分类任务中非常常见。它源于信息论&#xff0c;反映了两个概率分布之间的距离。 交叉熵的数学定义 对于分类任务&#xff0c;假设我们有&#…

Scala的泛型界限

泛型界限 上限 泛型的上限&#xff0c;下限。对类型的更加具体的约束&#xff01; 如果给某个泛型设置了上界&#xff1a;这里的类型必须是上界 如果给某个泛型设置了下界&#xff1a;这里的类型必须是下界

vscode中同时运行两个python文件(不用安装插件)

如何在vscode中同时运行两个python文件呢&#xff1f;今天在工作中遇到了这个问题。 查了网上的方法是安装coder runner插件&#xff0c;后来发现自身就有这个功能。所以记录一下,方便后续查找: 这是我的第一个文件&#xff0c;点击右上角的运行旁边的小箭头&#xff0c;有一…

python rabbitmq实现简单/持久/广播/组播/topic/rpc消息异步发送可配置Django

windows首先安装rabbitmq 点击参考安装 1、环境介绍 Python 3.10.16 其他通过pip安装的版本(Django、pika、celery这几个必须要有最好版本一致) amqp 5.3.1 asgiref 3.8.1 async-timeout 5.0.1 billiard 4.2.1 celery 5.4.0 …

Numpy基本介绍

目录 1、Numpy的优势 1.1、ndarray介绍 1.2、ndarray与Python原生list运算效率对比 1.3、ndarray的优势 1.3.1、内存块风格 1.3.2、ndarray支持并行化运算(向量化运算) 1.3.3、效率远高于纯Python代码 2、N维数组-ndarray 2.1、ndarray的属性 2.2、ndarray的形状 2…

XXE练习

pikachu-XXE靶场 1.POC:攻击测试 <?xml version"1.0"?> <!DOCTYPE foo [ <!ENTITY xxe "a">]> <foo>&xxe;</foo> 2.EXP:查看文件 <?xml version"1.0"?> <!DOCTYPE foo [ <!ENTITY xxe SY…

正则表达式在线校验(RegExp) - 加菲工具

正则表达式在线校验 - 加菲工具 打开网站 加菲工具 选择“正则表达式在线校验” 或者直接打开https://www.orcc.online/tools/regexp 输入待校验的源文本与正则表达式&#xff0c;点击“校验”按钮 需要注意检验后的内容可能存在多空格&#xff0c;可以拉下去看看~

java后端环境配置

因为现在升学了&#xff0c;以前本来想毕业干java的&#xff0c;很多java的环境配置早就忘掉了&#xff08;比如mysql maven jdk idea&#xff09;&#xff0c;想写个博客记录下来&#xff0c;以后方便自己快速搭建环境 JAVA后端开发配置 环境配置jdkideamavenMySQLnavicate17…

51c嵌入式~合集3

我自己的原文哦~ https://blog.51cto.com/whaosoft/12847563 一、UCIe 2.0 日前&#xff0c;通用芯粒互连&#xff08;UCIe&#xff09;产业联盟最新公布了 UCIe 2.0 规范&#xff0c;支持可管理性标准化系统架构&#xff0c;并全面解决了系统级封装&#xff08;SiP&#x…

解决电脑网速慢问题:硬件检查与软件设置指南

电脑网速慢是许多用户在使用过程中常见的问题&#xff0c;它不仅会降低工作效率&#xff0c;还可能影响娱乐体验。导致电脑网速慢的原因多种多样&#xff0c;包括硬件问题、软件设置和网络环境等。本文将从不同角度分析这些原因&#xff0c;并提供提高电脑网速的方法。 一、检查…

6、AI测试辅助-测试报告编写(生成Bug分析柱状图)

AI测试辅助-测试报告编写&#xff08;生成Bug分析柱状图&#xff09; 一、测试报告1. 创建测试报告2. 报告补充优化2.1 Bug图表分析 3. 风险评估 总结 一、测试报告 测试报告内容应该包含&#xff1a; 1、测试结论 2、测试执行情况 3、测试bug结果分析 4、风险评估 5、改进措施…