【深度学习入门】深度学习介绍

1.1 深度学习介绍

学习目标

  • 目标
    • 知道深度学习与机器学习的区别
    • 了解神经网络的结构组成
    • 知道深度学习效果特点
  • 应用

区别

在这里插入图片描述

特征提取方面
  • 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识
  • 深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,通过将数据从一层传递到另一层来构建更复杂的模型。通过大量数据的训练自动得到模型,不需要人工设计特征提取环节

深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言领域(NLP)

深度学习应用场景

  • 图像识别
    • 物体识别
    • 场景识别
    • 车型识别
    • 人脸检测跟踪
    • 人脸关键点定位
    • 人脸身份认证
  • 自然语言处理技术
    • 机器翻译
    • 文本识别
    • 聊天对话
  • 语音技术
    • 语音识别

深度学习代表算法-神经网络

深度学习(Deep Learning)是机器学习的一个子领域,它利用多层神经网络模型从大量数据中自动学习特征和模式,以执行复杂的任务。这些任务包括但不限于图像识别、语音识别、自然语言处理、推荐系统等。以下是关于深度学习的详细介绍:

深度学习的基本概念
  • 神经网络:深度学习的核心是人工神经网络(Artificial Neural Network, ANN),它由许多节点(或称为神经元)组成,这些节点按层次排列。每个神经元接收输入信号,经过激活函数处理后产生输出信号。
  • 深度:所谓的“深度”指的是网络中有多个隐藏层。更多的层数意味着网络可以学习到更加抽象和复杂的特征表示。
  • 参数学习:通过调整网络中的权重(weights)和偏置(biases),使得网络能够最小化预测结果与真实标签之间的误差。
主要组件
  • 输入层:负责接收原始数据,如图像像素值、音频波形等。
  • 隐藏层:包含一个或多个中间层,用于提取数据特征。每一层都应用线性变换(加权求和)和非线性激活函数来处理信息。
  • 输出层:生成最终预测结果,对于分类问题通常是类别概率分布;对于回归问题则是连续值。
  • 损失函数(Loss Function):定义了预测值与实际值之间差异的度量标准,目的是指导模型如何改进其性能。
  • 优化算法:如随机梯度下降(SGD)、Adam 等,用来更新网络参数以降低损失函数值。
    正则化技术:为了防止过拟合,常用的技术包括 Dropout、L2 正则化等。
常见架构
  • 卷积神经网络(CNN):主要用于处理具有网格结构的数据,例如图像和视频。它们擅长捕捉空间局部相关性和平移不变性。
  • 循环神经网络(RNN)及其变体(如 LSTM 和 GRU):适用于序列数据,如时间序列分析、文本生成等。它们能够记住过去的信息,并影响当前的输出。
  • 自编码器(Autoencoder):用于无监督学习,旨在重建输入数据本身,常用于降维、特征学习和异常检测。
  • 生成对抗网络(GAN):由两个部分构成——生成器(Generator)和判别器(Discriminator),两者相互对抗训练,用于生成逼真的合成数据。
应用场景
  • 计算机视觉:如图像分类、目标检测、语义分割等。
  • 自然语言处理(NLP):如机器翻译、情感分析、问答系统等。
  • 语音识别:将语音转换为文本。
  • 推荐系统:根据用户行为提供个性化推荐。
  • 医疗诊断:辅助医生进行疾病诊断和治疗方案选择。
发展趋势

随着计算能力的提升(特别是 GPU 的广泛应用)、大数据集的可用性以及新算法的不断涌现,深度学习正在快速发展并取得突破性的成果。同时,研究者们也在探索更高效的架构设计、更好的泛化能力和更低的资源消耗,以便让深度学习技术能够在更多领域得到应用。

深度学习的工具和框架

为了简化开发流程并加速研究进展,出现了许多开源的深度学习库和平台:

  • TensorFlow:由谷歌开发,支持分布式计算,拥有庞大的社区支持。
  • PyTorch:来自Facebook AI Research,以其灵活性和动态图机制受到欢迎。
  • Keras:提供了高层API接口,易于上手,可运行于 TensorFlow 或 Theano 之上。
  • MXNet:亚马逊主推的框架,强调效率和扩展性。
  • Caffe:专注于卷积神经网络,在早期的图像处理任务中表现出色。

总之,随着硬件性能的提升以及大数据时代的到来,深度学习已经成为解决复杂问题的强大工具。无论是学术界还是工业界,都在积极探索如何更好地利用这项技术创造价值

神经网络

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的 计算模型。经典的神经网络结构包含三个层次的神经网络。分别输入层,输出层以及隐藏层。

在这里插入图片描述

其中每层的圆圈代表一个神经元,隐藏层和输出层的神经元有输入的数据计算后输出,输入层的神经元只是输入。

  • 神经网络的特点
    • 每个连接都有个权值,同一层神经元之间没有连接
    • 神经元当中会含有激活函数
    • 最后的输出结果对应的层也称之为全连接层

神经网络是深度学习的重要算法,用途在图像(如图像的分类、检测)和自然语言处理(如文本分类、聊天等)

那么为什么设计这样的结构呢?首先从一个最基础的结构说起,神经元。以前也称之为感知机。神经元就是要模拟人的神经元结构。

在这里插入图片描述

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

神经网络理解案例

我们以票房预测的例子说明

在这里插入图片描述

输入影响票房的N个因素,这里举例四个因素,结果输出一个Y预测票房结果

为什么深度学习现在效果非常好

在这里插入图片描述
过去十多年,得益于数字社会的发展,积累了大量的数据。以前的一些算法到达了瓶颈期,它们无法适用于大量的数据。"大规模"一直推动深度学习的发展进步。不仅仅是数据量的大,算法模型规模越来越大等。

  • 数据
  • 计算
    • 训练网络需要GPU、TPU
  • 算法
    • 一些创新,如ReLU激活函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/63941.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实现按键按下(低电平)检测到下降沿

按照流程进行编程 步骤1: 初始化函数 包括时基工作参数配置 输入通道配置 更新中断使能 使能捕获、捕获中断及计数器 HAL_TIM_IC_Init(&ic_handle) //时基参数配置 HAL_TIM_IC_ConfigChannel(&ic_handle,&ic_config,TIM_CHANNEL_2) //输…

【Linux金典面试题(上)】41道Linux金典面试问题+详细解答,包含基本操作、系统维护、网络配置、脚本编程等问题。

大家好,我是摇光~,用大白话讲解所有你难懂的知识点 之前写了一篇关于 python 的面试题,感觉大家都很需要,所以打算出一个面试专栏。 【数据分析岗】Python金典面试题 这个专栏主要针对面试大数据岗位、数据分析岗位、数据运维等…

【Ubuntu】使用ip link工具创建虚拟局域网并配置?

🦋🦋🦋如何使用ip link工具创建虚拟局域网? sudo ip link add link enx888bd66b7000 name enx.120 type vlan id 120 上述命令使用ip link工具在Linux系统中创建了一个新的虚拟局域网(VLAN)接口&#xff0c…

汽车车牌标记支持YOLO,COCO,VOC三种格式标记,4000张图片的数据集

本数据集支持YOLO,COCO,VOC三种格式标记汽车车牌,无论是新能源汽车还是油车都能识别标记,该数据集一共包含4000张图片 数据集分割 4000总图像数 训练组 70% 2800图片 有效集 20% 800图片 测…

Docker 如何在容器未运行时修改内部配置文件

今天遇到一个数据库分组查询的问题:sql_modeonly_full_group_by,即查询 SQL 的字段列表中包含了未分组的字段,在 mysql7 版本下需要修改数据库的配置文件 my.cnf 中的 sql_mode,去除掉值中的 ONLY_FULL_GROUP_BY。 第一次进入 do…

游秦岭山感

巍乎高哉! 悠悠大秦岭 佑吾华夏之根脉 八水润之 泽万物而赋予生机 于万山之山中 享自然之美于万物 西有昆仑祖龙脉 东有秦岭护关中 绿水青山国之本 万山长青谋发展 旭日东升耀中华 固我山河永泰安 你我同行共保护 关中龙脉更兴旺

阿里云-通义灵码:测试与实例展示

目录 一.引子 二.例子 三.优点 四.其他优点 五.总结 一.引子 在软件开发的广袤天地中,阿里云通义灵码宛如一座蕴藏无尽智慧的宝库,等待着开发者们去深入挖掘和探索。当我们跨越了入门的门槛,真正开始使用通义灵码进行代码生成和开发工作…

微信小程序中使用miniprogram-sm-crypto实现SM4加密攻略

在微信小程序开发过程中,数据安全至关重要。本文将为大家介绍如何在微信小程序中使用miniprogram-sm-crypto插件进行SM4加密,确保数据传输的安全性。 一、SM4加密简介 SM4是一种对称加密算法,由国家密码管理局发布,适用于商密领…

使用 Ansys Fluent 对气体泄漏检测进行建模

了解使用 Ansys Fluent 仿真气体泄漏和确保安全的前沿技术。 挑战 气体泄漏对人类安全和环境构成重大风险。及早检测气体泄漏可以防止潜在的灾难,包括爆炸、火灾和有毒物质暴露。有效的气体泄漏检测系统对于石油和天然气、化学加工和住宅基础设施等行业至关重要。…

原创 传奇996_55——后端如何点击npc隐藏主界面

点击图片退出&#xff0c;举例&#xff1a; |linkexit Img|ax0.5|ay0.5|percentx50|percenty50|imgpublic/touming2.png|hideMain1|linkexit <Img|x0|y0|esc1|show4|bg1|move0|imgcustom/new/longhun/bg.png|loadDelay0|reset1|hideMain1>

Golang学习笔记_01——包

文章目录 包&#xff08;package&#xff09;1. 定义2. 导入3. 初始化4. 可见性4. 注意4.1 包声明4.2 main包4.3 包的导入4.4标识符的可见性4.5 包的初始化4.6 避免命名冲突4.7 包的路径和名称4.8 匿名导入4.9 使用Go Modules 包&#xff08;package&#xff09; 在Golang&…

C# 中的委托与事件:实现灵活的回调机制

C#中的委托&#xff08;Delegate&#xff09;和事件&#xff08;Event&#xff09;。委托和事件是C#中非常重要的特性&#xff0c;它们允许你实现回调机制和发布-订阅模式&#xff0c;从而提高代码的灵活性和解耦程度。通过使用委托和事件&#xff0c;你可以编写更加模块化和可…

QT图形/视图架构详解(一)

场景、视图与图形项 图形/视图架构主要由 3 个部分组成&#xff0c;即场景、视图和图形项&#xff0c;三者的关系如图所示&#xff1a; 场景、视图和图形项的关系 场景&#xff08;QGraphicsScene 类&#xff09; 场景不是界面组件&#xff0c;它是不可见的。场景是一个抽象的…

c++三维移动射击

大家好&#xff0c;我是love-putter&#xff0c;距离上一篇文章的发布已经一年了&#xff0c;在这一年里&#xff0c;经过时间的沉淀&#xff0c;希望给大家带来更好的作品&#xff0c;废话不多说&#xff0c;上代码 #include <iostream> #include <ctime> #inclu…

LLM之RAG实战(五十)| FastAPI:构建基于LLM的WEB接口界面

FastAPI是WEB UI接口&#xff0c;随着LLM的蓬勃发展&#xff0c;FastAPI的生态也迎来了新的机遇。本文将围绕FastAPI、OpenAI的API以及FastCRUD&#xff0c;来创建一个个性化的电子邮件写作助手&#xff0c;以展示如何结合这些技术来构建强大的应用程序。 下面我们开始分步骤操…

Maven学习(Maven项目模块化。模块间“继承“机制。父(工程),子项目(模块)间聚合)

目录 一、Maven项目模块化&#xff1f; &#xff08;1&#xff09;基本介绍。 &#xff08;2&#xff09;汽车模块化生产再聚合组装。 &#xff08;3&#xff09;Maven项目模块化图解。 1、maven_parent。 2、maven_pojo。 3、maven_dao。 4、maven_service。 5、maven_web。 6…

CNAS软件实验室认可费用清单,如何规划预算方案?

CNAS软件实验室在申请认可前&#xff0c;需要按照CNAS相关认可文件的要求&#xff0c;建立完善的CNAS软件实验室质量管理体系&#xff0c;试运行六个月&#xff0c;且覆盖全部质量要素后&#xff0c;向CNAS认可委提交申请&#xff0c;等待专家的审查。在前期的筹备工作中&#…

【2024 Dec 超实时】编辑安装llama.cpp并运行llama

首先讲一下环境 这是2024 年12月&#xff0c;llama.cpp 的编译需要cmake 呜呜呜 网上教程都是make 跑的。反正我现在装的时候make已经不再适用了&#xff0c;因为工具的版本&#xff0c;捣鼓了很久。 ubuntu 18 conda env内置安装。 以下是可以完美编译llama.cpp的测试工具版…

优化移动端H5:常见问题与解决方案

移动端H5开发中的“坑”与解决方案 本文介绍了开发中遇到的几个关于移动端H5开发中的小问题&#xff0c;以及解决的方法。 一、iOS滑动不流畅问题 在iOS设备上&#xff0c;H5页面的滑动效果有时会出现不流畅的情况&#xff0c;特别是在页面高度超过一屏时。这通常是由于iOS的…

Visual Studio 2022+CMake配置PCL1.14.1

前言 本教程只是提供高效的PCL配置流程&#xff0c;不提供Qt环境配置&#xff0c;如果需要GUI界面&#xff0c;则需要自寻查找Cmake配置QT的教程。请相信&#xff0c;在CMake之下没有任何事是困难的&#xff0c;最困难的工作已经由前辈们完成。因此&#xff0c;对于C用户来说学…