Hdfs小文件治理策略以及治理经验

小文件是 Hadoop 集群运维中的常见挑战,尤其对于大规模运行的集群来说可谓至关重要。如果处理不好,可能会导致许多并发症。Hadoop集群本质是为了TB,PB规模的数据存储和计算因运而生的。为啥大数据开发都说小文件的治理重要,说HDFS 存储小文件效率低下,比如增加namenode负载等,降低访问效率等?究竟本质上为什么重要?以及如何从本质上剖析小文件,治理小文件呢?今天就带你走进小文件的世界。

 1. 什么是小文件?

日常生产中HDFS上小文件产生是一个很正常的事情,有些甚至是不可避免,比如jar,xml配置文件,tmp临时文件,流式任务等都是小文件的组成部分。当然更多的是因为集群设置不合理,造成一些意料之外的小文件产生。实际公司生产中对于小文件的大小没有一个统一的定义。一般公司集群的blocksize的大小在128/256两者居多。首先小文件大小肯定是要远小于blocksize的文件。一般公司小文件的大小定义如1Mb,8Mb,甚至16Mb,32Mb更大。根据公司实际集群状态定义,因为有些情况合并小文件需要消耗额外的资源。

既然剖析小文件,那么不可避免的要先剖析hdfs的存储原理。众多周知了,HDFS上文件的数据存储分为namenode元数据管理和实际数据文件。hdfs上的数据文件被拆分成块block,这些块block在整个集群中的datanode的本地文件系统上存储和复制,每个块也维护者自己的blockmeta信息。namenode主要维护这些文件的元数据信息,具体namenode的解析参考我的其他博客。

如下一个某个文件的某个block在data上存储的情况。

2.小文件的危害

2.1 小文件对namenod的影响

如下图1,一个文件192Mb,默认blocksize=128Mb,副本个数为3,存储为2个block。

如下图2,同样一个文件192Mb,默认blocksize=128Mb,副本个数为3,存储为192个block

 namenode的namespace中主要占存储对象是文件的目录个数,文件(文件名长度)以及文件block数根据namenode实际使用经验来看,一个存储对象大概占用150字节的空间。HDFS上存储文件占用的namenode内存计算公式如下:

Memory=150bytes*(1个文件inode+(文件的块数*副本个数))

如上图1 , 一个文件192Mb,默认blocksize=128Mb,副本个数为3,存储为2个block,需要namenode内存=150*(1+2*3)=1050  Bytes

同理图2, 一个文件192Mb,默认blocksize=128Mb,副本个数为3,存储为192个block,需要namenode内存=150 x (192 + (192 x 3)) = 115200 Bytes


总结

  1. 从上面可以看出,同样的一个文件,大小不同形态的存储占用namenode的内存之比相差了109倍之多。所以如果对于单namenode的集群来说,大量的小文件的会占用大量的namenode堆内存空间,给集群的存储造成瓶颈。有些人可能会说我们联邦,多组namenode不就没有这个问题了,其实不然,且往下看

  2. 当 NameNode 重新启动时(虽然生产上这种情况很少),它必须将文件系统元数据fsimage从本地磁盘加载到内存中。这意味着如果 namenode 元数据很大,重启会更慢(以我们公司3亿block,5万多个文件对象来说,重启一次1.5小时,期间应用不可用)其次,datanode 还通过网络向 NameNode 报告块更改;更多的块意味着要通过网络报告更多的变化,等待时间更长。

  3. 更多的文件,更多的block,意味着更多的读取请求需要由 NameNode 提供服务,这将增加 RPC 队列和处理延迟,进而导致namenode性能和响应能力下降。官方介绍说接近 40K~50K RPCs/s 人为是极高的负载。实际使用来看比这低时对于namenode来说性能都会打很大的折扣。

2.2 小文件对datanode影响

文件的block存储是存储在datanode本地系统上,底层的磁盘上,甚至不同的挂载目录,不同的磁盘上。大量的小文件,意味着数据着寻址需要花费很多时间,尤其对于高负载的集群来说,磁盘使用率50%以上的集群,花费在寻址的时间比文件读取写入的时间更多。这种就违背了blocksize大小设计的初衷(实践显示最佳效果是:寻址时间仅占传输时间的1%)。这样会造成磁盘的读写会很慢,拥有大量小文件会导致更多的磁盘搜索。如下磁盘延迟:


2.3 小文件对计算的影响

基于HDFS文件系统的计算,blokc块是最小粒度的数据处理单元。块的多少往往影响应用程序的吞吐量。更多的文件,意味着更多的块,以及更多的节点分布。

比如以MapReduce任务为例(hive等),在 MapReduce 中,会为每个读取的块生成一个单独的 Map 任务,如果大量小文件,大量的块,意味着着更多任务调度,任务创建开销,以及更多的任务管理开销(MapReduce 作业的 application master 是一个 Java 应用,它的主类是 MRAppMaster。它通过创建一定数量的bookkeeping object跟踪作业进度来初始化作业,该对象接受任务报告的进度和完成情况)。虽然可以开启map前文件合并,但是这也需要不停地从不同节点建立连接,数据读取,网络传输,然后进行合并,同样会增加消耗资源和增加计算时间,成本也很高。

同样,如果是spark计算引擎,executor的一次读取和处理一个分区,默认情况下,每个分区是一个 HDFS 块,如果大量的小文件,每个文件都在不同的分区中读取,这将导致大量的任务调度开销,同时每个 CPU 内核的吞吐量降低。



3. 小文件的产生

  1. 流式数据,如flume,kafak,sparkstreaming,storm,flink等,流式增量文件,小窗口文件,如几分钟一次等。

  2. MapReduce引擎任务:如果纯map任务,大量的map;如果mapreduce任务,大量的reduce;两者都会造成大量的文件。出现这种情况的原因很多,果分布表的过度分区,输入大量的小文件,参数设置的不合理等,输出没有文件合并等。

  3. spark任务过度并行化,Spark 分区越多,写入的文件就越多。

  4. 文件的压缩与存储格式不合理;一般生产公司很少使用textfile这种低效的文件格式了。

使用压缩,降低文件的大小,同时也会降低文件的总块数。注意文件存储格式和压缩不合理只是加剧小文件问题,不是产生小文件的本质。

4. HDFS小文件监控

HDFS的fsimage是HDFS文件系统的一个重要组成部分,记录了HDFS文件系统的元数据信息,包括文件、目录、权限、块等信息。通过监控HDFS的fsimage,可以了解HDFS文件系统的整体情况,包括文件数量、文件大小、文件类型等信息,进而实现对HDFS小文件的监控和治理。

具体来说,可以通过以下步骤对HDFS小文件进行监控:

  1. 获取HDFS的fsimage:使用Hadoop自带的命令hdfs oiv -p XML -i fsimage命令获取HDFS的fsimage文件。该命令会将HDFS的fsimage文件以XML格式输出,包括HDFS中所有文件和目录的元数据信息;

  2. 解析fsimage文件:使用Python等脚本语言解析获取到的fsimage文件,提取其中的文件、目录、块等信息。可以使用Python的ElementTree模块等工具对XML文件进行解析,提取需要的信息;

  3. 统计文件数量和文件大小:根据解析后的文件信息,统计HDFS中小文件的数量和大小。通常可以根据文件大小和文件数量的阈值来定义小文件,例如文件大小小于128MB或文件数量小于1000个等;

  4. 可视化展示:使用可视化工具,如Grafana、Kibana等将统计结果进行可视化展示,以便于对HDFS小文件的监控和管理。

解析fsimage文件为txt文件

hdfs oiv -i  fsimage_0000000192578352133 -o /data2/data/fsimage/$day/fsimage.txt -p Delimited -t /data2/data/fsimage/$day/tmp1.

fsimage文件重要的字段释义

INODE_ID:文件或目录的唯一标识符;
NAME:文件或目录的名称;
PARENT_ID:父目录的INODE_ID;
MODIFICATION_TIME:最后修改时间;
ACCESS_TIME:最后访问时间;
BLOCK_IDS:文件的数据块ID列表;
BLOCK_SIZE:数据块大小;
NUM_BLOCKS:数据块数量;
PERMISSIONS:文件或目录的权限信息;
USER_NAME:文件或目录所属用户;
GROUP_NAME:文件或目录所属用户组;
SYMLINK:如果是符号链接,则包含符号链接的目标路径;
UNDER_CONSTRUCTION:如果文件正在写入中,则为true;
UNDER_RECOVERY:如果文件正在恢复中,则为true;
FILE_LENGTH:文件长度;
NS_QUOTA:命名空间配额;
DS_QUOTA:磁盘配额;
STORAGE_POLICY:存储策略。

通过编写脚本采集相关指标,并存入相关数据库,能够进行绘制可观测图,便于监控小文件的状态,便于后续进行小文件治理

5. HDFS小文件的治理方法

针对HDFS小文件的问题,有以下几种治理方法:

  1. 合并小文件:将多个小文件合并为一个大文件,减少文件数量。这种方法需要注意文件的内容和格式,以免合并后的文件无法使用或者存在数据丢失等问题;

  2. 压缩文件:将多个小文件压缩为一个压缩包,减少存储空间。这种方法可以使用Hadoop自带的压缩工具,如gzip、bzip2等;

  3. 删除无用文件:删除不再需要的小文件,释放存储空间;

  4. 设置文件过期时间:对于不再需要的文件,可以设置其过期时间,自动删除过期文件;

  5. 使用SequenceFile:使用Hadoop自带的SequenceFile格式存储小文件,将多个小文件合并到一个SequenceFile中,以减少文件数量,提高处理效率。

通常可以通过应用层,进行合并小文件、删除过期无用文件、转移小文件到其他存储媒介等方式,减少和治理hdfs中的小文件,以提升hdfs集群的稳定性。

针对如上办法进行治理方法如下

  1. 合并小文件:对于日志文件等大量的小文件,可以使用Hadoop自带的合并工具将多个小文件合并为一个大文件。下面是通过hive的重写方式合并小文件,核心参数如下;

set hive.input.format = org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
set hive.merge.mapfiles = true;
set hive.merge.mapredfiles = true;
set hive.merge.smallfiles.avgsize=256000000;
set hive.merge.size.per.task=12800000;
set mapred.max.split.size=256000000;
set mapred.min.split.size=64000000;
set mapred.min.split.size.per.node=64000000;
set mapred.min.split.size.per.rack=64000000;1.2.3.4.5.6.7.8.9.
  1. 压缩文件:对于大量的小文件,可以使用压缩工具将多个小文件压缩为一个压缩包,以减少存储空间。例如,使用gzip或bzip2压缩工具压缩文件,在HDFS上存储压缩文件,以减少存储空间和文件数量;

  2. 删除无用文件:对于不再需要的小文件,可以使用Hadoop自带的命令hadoop fs -rm命令删除文件,或者使用定时任务脚本定期删除过期文件; 

  3. 设置文件过期时间:使用hadoop fs -touchz命令设置文件的过期时间,当文件过期后,自动删除文件。例如,使用hadoop fs -touchz命令设置文件的过期时间为30天,当文件超过30天未被访问时,自动删除文件;

  4. 使用SequenceFile:对于大量的小文件,可以使用SequenceFile格式存储文件,将多个小文件合并成一个SequenceFile文件。例如,使用Hadoop自带的SequenceFile.Writer类将多个小文件写入SequenceFile文件中,以减少存储空间和文件数量。

6. 疑问和思考

暂无

7. 参考文档

暂无

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

08 - 步骤 表输出

简介 表输出(Table Output)步骤是用于将 Kettle 中的数据写入关系型数据库表的步骤。它允许用户将数据流中的数据插入、更新或删除到目标数据库表中。 使用 场景 我要将处理完的数据流中的sysOrgCode 跟 plateNumber 保存记录到mysql 1、拖拽表输出…

Java Jackson-jr 库使用介绍

介绍 Jackson-jr 是一个轻量级的Java JSON 处理库。这个库被设计用来替代 Jackson 的复杂性。对比 Jackson 的复杂 API,Jackson-jr 的启动速度更快,包大小更小。 虽然Jackson databind(如ObjectMapper)是通用数据绑定的良好选择…

初学python记录:力扣1235. 规划兼职工作

题目: 你打算利用空闲时间来做兼职工作赚些零花钱。 这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]。 给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime …

ROS服务器通信

目录 一、角色 二、流程 注意 三、例子描述 四、srv文件 编译配置文件 vscode配置 五、Server.cpp编写例子 编写CMakeList 六、观察server的效果 七、Client编写例子 编写CMakeList 八、观察Client的结果 九、Client优化(动态输入) 了解argc…

计算机行业AI前沿报告:混合专家模型技术(MoE)

今天分享的是****AI系列深度研究报告:《计算机行业AI前沿报告:混合专家模型技术(MoE)》。(报告出品方:中信建投证券) 精选内容来源公众:见鹿报告 报告共计: 24页 [报告内容摘要如下] **•核心观点&…

ASP.NET 两种开发模式

1》》WebForm 开发模式 1. 服务器端控件 2. 一般处理程序html静态页Ajax 3. 一般处理程序html模板 如下图 2》》MVC 太复杂的系统,会造成Controller 过复杂。 后来就诞生了 MVP、MVVM等模式

AI大模型探索之路-训练篇12:语言模型Transformer库-Datasets组件实践

系列篇章💥 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据集概…

FlaUI

FlaUI是一个基于微软UIAutomation技术(简称UIA)的.NET库,它主要用于对Windows应用程序(如Win32、WinForms、WPF、Store Apps等)进行自动化UI测试。FlaUI的前身是TestStack.White,由Roemer开发,旨…

Linux平台下muduo网络库源码编译安装与测试,包含boost库的安装与测试!!!!

最近在学习muduo网络库,先来记录一下如何在Linux平台下编译安装以及测试muduo网络库源码。 获取源码 muduo库源码github仓库地址: https://github.com/chenshuo/muduo 在linux系统下,输入 git clone https://github.com/chenshuo/muduo.git…

QT防止自研软件被复制的基本操作(二)

参考一 自研软件为了防止被人任意复制传播,需要设置注册使用模式。基本原理:通过计算机的特异性编号,加上自己的编码,使用加密算法算出一个生成码。 一、计算机的特异性编号 硬盘的编号:最后一块硬盘的编号就行&#…

【简单讲解下npm常用命令】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

JavaScript 中的 Class 类

🔥 引言 在ECMAScript 2015(ES6)中,class 关键字被引入,为JavaScript带来了一种更接近传统面向对象语言的语法糖。类是创建对象的模板,它们封装了数据(属性)和行为(方法&…

YOLO自研模块:多尺度轻量化卷积模块

目录 一、原理 二、代码 三、配置文件 一、原理 不同大小的卷积核,提取目标特征的特征尺度不同,所以通过使用不同大小卷积核的卷积来提取特征就可以保证获取到目标的多尺度特征。 借鉴YOLOv8中,将通道数进行划分的操作,在卷积的输入过程中为了减小参数量,将输入通道数…

计算机的翻译(编译和链接)过程

🎁个人主页:我们的五年 🔍系列专栏:C语言基本概念 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 🚗1.翻译环境和运行环境&#xff1…

生信小知识 | 如何快速确定一个物种某一个基因家族全部基因数目

公众号:生信漫谈,获取最新科研信息! 生信小知识 | 如何快速确定一个物种某一个基因家族全部基因数目https://mp.weixin.qq.com/s?__bizMzkwNjQyNTUwMw&mid2247486827&idx1&sn9fea85f8d28af3e02570235936a1f535&chksmc0e9e8…

io流,字节流概述

io流概述 io流:输入输出流读写数据的 i 指Input,称为输入流:负责把数据读到内存中去 o指Output,称为输出流:负责写数据出去 io流的分类 按流的方向分为: 输入流和输出流。 按流中数据的最小单位, 分为:字节流(适合操作…

展开说说:Android Fragment完全解析-卷三

本文章分析了Fragment的管理器FragmentManager、事务FragmentTransaction 、以及完整的声明周期和动态加载Fragment的原理解析。 1、Fragment管理器 FragmentManager 类负责在应用的 fragment 上执行一些操作,如添加、移除或替换操作,以及将操作添加到…

c#学习基础2

四、复杂数据类型--结构体 1.基本概念 、2.基本语法 结构体一般写在namespace语句块中; 结构体关键字 struct 3.实例 4.结构体的使用 5.访问修饰符 6.结构体的构造函数 7.总结 五、排序初探 1)冒泡排序 1.排序的基本概念 2.冒泡排序的基本原理 两…

西班牙语语法名词的复数形式,柯桥西班牙语培训

(2)后面加-es • 以辅音结尾的名词。例如: el seor - los seores 先生 la ciudad - las ciudades 城市 • 以-y 结尾的名词。例如: el rey - los reyes 国王 la ley - las leyes 法律 • 以-z 结尾的名词,将词尾…

【Linux】学习笔记

文章目录 [toc]第一章:基础篇01|课程介绍02|内容综述03|什么是Linux04|Linux的内核版本及常见发行版内核版本发行版本Red Hat Enterprise LinuxFedoraCentOSDebianUbuntu 05|安装VirtualBox虚拟机VirtualBox下载url 06|在虚拟机中安装Linux系统Linux安装镜像下载 07…