内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社
考虑二阶齐次线性微分方程
d 2 y d x 2 + p ( x ) d y d x + q ( x ) y = 0 \frac{\mathrm{d}^2y}{\mathrm{d}x^2}+ p(x)\frac{\mathrm{d}y}{\mathrm{d}x}+q(x)y=0 dx2d2y+p(x)dxdy+q(x)y=0
满足初值条件 y ( x 0 ) = y 0 , y ′ ( x 0 ) = y 0 ′ y(x_0)=y_0,y'(x_0)=y'_0 y(x0)=y0,y′(x0)=y0′ 的情况
不失一般性,设 x 0 = 0 x_0=0 x0=0,否则设 t = x − x 0 t=x-x_0 t=x−x0,经此变换后,方程形式不变。
定理
若上式中的系数 p ( x ) p(x) p(x) 和 q ( x ) q(x) q(x) 都能展开成 x x x 的幂级数,且收敛区间为 ∣ x ∣ < R |x|<R ∣x∣<R,则方程有形如
y = ∑ n = 0 ∞ a n x n y=\sum^\infty_{n=0}a_nx^n y=n=0∑∞anxn
的特解,也以 ∣ x ∣ < R |x|<R ∣x∣<R 为收敛区间。
例1
y ′ ′ − x y = 0 y''-xy=0 y′′−xy=0
设通解为
y = a 0 + a 1 x + ⋯ + a n x n + ⋯ y=a_0+a_1x+\cdots+a_nx^n+\cdots y=a0+a1x+⋯+anxn+⋯
求导两次得
y ′ ′ = 2 ⋅ 1 a 2 + 3 ⋅ 2 a 3 x + ⋯ + n ( n − 1 ) a n x n − 2 + ⋯ y''=2\cdot1a_2+3\cdot2a_3x+\cdots+n(n-1)a_nx^{n-2}+\cdots y′′=2⋅1a2+3⋅2a3x+⋯+n(n−1)anxn−2+⋯
将 y , y ′ ′ y,y'' y,y′′ 代入方程,比较同次幂的系数得
a 2 = 0 , n ( n − 1 ) a n − a n − 3 = 0 a_2=0,n(n-1)a_n-a_{n-3}=0 a2=0,n(n−1)an−an−3=0
所以
a 3 k = a 0 ∏ i = 1 k 3 i ( 3 i − 1 ) a 3 k + 1 = a 1 ∏ i = 1 k 3 i ( 3 i + 1 ) a 3 k + 2 = 0 \begin{align*} &a_{3k}=\frac{a_0}{\prod^k_{i=1}3i(3i-1)}\\ &a_{3k+1}=\frac{a_1}{\prod^k_{i=1}3i(3i+1)}\\ &a_{3k+2}=0 \end{align*} a3k=∏i=1k3i(3i−1)a0a3k+1=∏i=1k3i(3i+1)a1a3k+2=0
其中 a 0 , a 1 a_0,a_1 a0,a1 是任意的,因而
y = a 0 [ 1 + ∑ k = 1 ∞ x 3 k ∏ i = 1 k 3 i ( 3 i − 1 ) ] + a 1 [ x + ∑ k = 1 ∞ x 3 k + 1 ∏ i = 1 k 3 i ( 3 i + 1 ) ] y=a_0 \left[1+\sum^\infty_{k=1}\frac{x^{3k}}{\prod^k_{i=1}3i(3i-1)}\right] +a_1 \left[x+\sum^\infty_{k=1}\frac{x^{3k+1}}{\prod^k_{i=1}3i(3i+1)}\right] y=a0[1+k=1∑∞∏i=1k3i(3i−1)x3k]+a1[x+k=1∑∞∏i=1k3i(3i+1)x3k+1]
例2
y ′ ′ − 2 x y ′ − 4 y = 0 y''-2xy'-4y=0 y′′−2xy′−4y=0
初值条件 y ( 0 ) = 0 , y ′ ( 0 ) = 1 y(0)=0,y'(0)=1 y(0)=0,y′(0)=1
还是设通解形式为
y = a 0 + a 1 x + ⋯ + a n x n + ⋯ y=a_0+a_1x+\cdots+a_nx^n+\cdots y=a0+a1x+⋯+anxn+⋯
由初值条件可得
a 0 = 0 , a 1 = 1 a_0=0,a_1=1 a0=0,a1=1
所以
y = x + a 2 x 2 + ⋯ + a n x n + ⋯ y ′ = 1 + 2 a 2 x + ⋯ + n a n x n − 1 + ⋯ y ′ ′ = 2 a 2 + 3 ⋅ 2 a 3 x + ⋯ + n ( n − 1 ) a n x n − 2 + ⋯ \begin{align*} &y=x+a_2x^2+\cdots+a_nx^n+\cdots\\ &y'=1+2a_2x+\cdots+na_nx^{n-1}+\cdots\\ &y''=2a_2+3\cdot2a_3x+\cdots+n(n-1)a_nx^{n-2}+\cdots\\ \end{align*} y=x+a2x2+⋯+anxn+⋯y′=1+2a2x+⋯+nanxn−1+⋯y′′=2a2+3⋅2a3x+⋯+n(n−1)anxn−2+⋯
代入方程,比较同次幂的系数得
a n = 2 n − 1 a n − 2 a_n=\frac{2}{n-1}a_{n-2} an=n−12an−2
所以
a 2 k + 1 = 1 k ! , a 2 k = 0 a_{2k+1}=\frac{1}{k!},a_{2k}=0 a2k+1=k!1,a2k=0
y = x + x 3 + x 5 2 ! + ⋯ + x 2 k + 1 k ! + ⋯ = x e x 2 y=x+x^3+\frac{x^5}{2!}+\cdots+\frac{x^{2k+1}}{k!}+\cdots=xe^{x^2} y=x+x3+2!x5+⋯+k!x2k+1+⋯=xex2