多线程安全单例模式的传统解决方案与现代方法

在多线程环境中实现安全的单例模式时,传统的双重检查锁(Double-Checked Locking)方案和新型的std::once_flagstd::call_once机制是两种常见的实现方法。它们在实现机制、安全性和性能上有所不同。

1. 传统的双重检查锁方案

双重检查锁(Double-Checked Locking)是一种在多线程环境中实现线程安全的单例模式的常见技术。其基本思想是在获取锁之前进行一次检查,以减少不必要的锁争用。

示例代码
#include <iostream>
#include <mutex>class Singleton {
public:static Singleton* getInstance() {if (instance == nullptr) { // 第一次检查std::lock_guard<std::mutex> lock(mtx); // 获取锁if (instance == nullptr) { // 第二次检查instance = new Singleton();}}return instance;}private:Singleton() { /* 构造函数 */ }static Singleton* instance;static std::mutex mtx;
};Singleton* Singleton::instance = nullptr;
std::mutex Singleton::mtx;int main() {Singleton* s1 = Singleton::getInstance();Singleton* s2 = Singleton::getInstance();std::cout << "Same instance: " << (s1 == s2) << std::endl;return 0;
}

问题分析

虽然双重检查锁在大多数情况下是有效的,但它存在以下问题:

  1. 编译器优化问题:编译器可能会对代码进行优化,导致instance = new Singleton()的执行顺序发生变化,从而引发潜在的未定义行为。
  2. 内存模型问题:在C++11之前的标准中,线程之间的内存可见性没有明确规定,因此即使使用双重检查锁,也可能出现多个线程同时创建实例的情况。

2. 新型的std::once_flagstd::call_once机制

C++11引入了std::once_flagstd::call_once,提供了一种更简洁、更安全的实现线程安全单例模式的方法。std::call_once确保指定的函数只被调用一次,即使多个线程同时调用。

示例代码
#include <iostream>
#include <mutex>class Singleton {
public:static Singleton& getInstance() {std::call_once(initFlag, initSingleton);return *instance;}private:Singleton() { /* 构造函数 */ }static Singleton* instance;static std::once_flag initFlag;static void initSingleton() {instance = new Singleton();}
};Singleton* Singleton::instance = nullptr;
std::once_flag Singleton::initFlag;int main() {Singleton& s1 = Singleton::getInstance();Singleton& s2 = Singleton::getInstance();std::cout << "Same instance: " << (&s1 == &s2) << std::endl;return 0;
}

优点
  1. 安全性std::call_once由标准库提供,确保了线程安全性和内存模型的正确性,消除了双重检查锁方案中的编译器优化和内存模型问题。
  2. 简洁性:代码更简洁,不需要手动处理锁和双重检查逻辑。
  3. 性能:在多次调用getInstance时,std::call_once避免了不必要的锁争用,性能更好。

总结

传统的双重检查锁方案虽然在大多数情况下是有效的,但它存在编译器优化和内存模型问题。相比之下,std::once_flagstd::call_once机制提供了更安全、更简洁、性能更好的实现方式,是实现线程安全单例模式的首选方法。

使用std::call_once不仅可以避免复杂的锁机制和双重检查逻辑,还能确保线程安全性和内存模型的正确性,是现代C++中推荐的多线程编程技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/62789.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Javaweb梳理21——Servlet

Javaweb梳理21——Servlet 21 Servlet21.1 简介21.3 执行流程21.4 生命周期4.5 方法介绍21.6 体系结构21.7 urlPattern配置21.8 XML配置 21 Servlet 21.1 简介 Servlet是JavaWeb最为核心的内容&#xff0c;它是Java提供的一门动态web资源开发技术。使用Servlet就可以实现&…

MySQL 主从同步一致性详解

MySQL主从同步是一种数据复制技术&#xff0c;它允许数据从一个数据库服务器&#xff08;主服务器&#xff09;自动同步到一个或多个数据库服务器&#xff08;从服务器&#xff09;。这种技术主要用于实现读写分离、提升数据库性能、容灾恢复以及数据冗余备份等目的。下面将详细…

点云3DHarris角点检测算法推导

先回顾2D的Harris角点检测算法推导 自相关矩阵是Harris角点检测算法的核心之一&#xff0c;它通过计算图像局部区域的梯度信息来描述该区域的特征。在推导Harris角点检测算法中的自相关矩阵时&#xff0c;我们首先需要了解自相关矩阵的基本思想和数学背景。 参考 [经典角点检…

在 CentOS 上安装 Docker:构建容器化环境全攻略

一、引言 在当今的软件开发与运维领域&#xff0c;Docker 无疑是一颗璀璨的明星。它以轻量级虚拟化的卓越特性&#xff0c;为应用程序的打包、分发和管理开辟了崭新的高效便捷之路。无论是开发环境的快速搭建&#xff0c;还是生产环境的稳定部署&#xff0c;Docker 都展现出了…

Unity-Particle System属性介绍(一)基本属性

什么是ParticleSystem 粒子系统是Unity中用于模拟大量粒子的行为的组件。每个粒子都有一个生命周期&#xff0c;包括出生、运动、颜色变化、大小变化和死亡等。粒子系统可以用来创建烟雾、火焰、水、雨、雪、尘埃、闪电和其他各种视觉效果。 开始 在项目文件下创建一个Vfx文件…

.NET8/.NETCore 依赖注入:自动注入项目中所有接口和自定义类

.NET8/.NETCore 依赖接口注入&#xff1a;自动注入项目中所有接口和自定义类 目录 自定义依赖接口扩展类&#xff1a;HostExtensions AddInjectionServices方法GlobalAssemblies 全局静态类测试 自定义依赖接口 需要依赖注入的类必须实现以下接口。 C# /// <summary>…

Brain.js(二):项目集成方式详解——npm、cdn、下载、源码构建

Brain.js 是一个强大且易用的 JavaScript 神经网络库&#xff0c;适用于前端和 Node.js 环境&#xff0c;帮助开发者轻松实现机器学习功能。 在前文Brain.js&#xff08;一&#xff09;&#xff1a;可以在浏览器运行的、默认GPU加速的神经网络库概要介绍-发展历程和使用场景中&…

使用pyQT完成简单登录界面

import sysfrom PyQt6.QtGui import QMovie,QPixmap from PyQt6.QtWidgets import QApplication, QWidget, QLabel, QPushButton,QLineEdit#封装我的窗口类 class MyWidget(QWidget):#构造函数def __init__(self):#初始化父类super().__init__()# 设置窗口大小self.resize(330,…

理解 Python PIL库中的 convert(‘RGB‘) 方法:为何及如何将图像转换为RGB模式

理解 Python PIL库中的 convert(RGB) 方法&#xff1a;为何及如何将图像转换为RGB模式 在图像处理中&#xff0c;保持图像数据的一致性和可操作性是至关重要的。Python的Pillow库&#xff08;继承自PIL, Python Imaging Library&#xff09;提供了强大的工具和方法来处理图像&…

avcodec_alloc_context3,avcodec_open2,avcodec_free_context,avcodec_close

avcodec_alloc_context3 是创建编解码器上下文&#xff0c;需要使用 avcodec_free_context释放 需要使用avcodec_free_context 释放 /** * Allocate an AVCodecContext and set its fields to default values. The * resulting struct should be freed with avcodec_free_co…

linux安装部署mysql资料

安装虚拟机 等待检查完成 选择中文 软件选择 网络和主机名 开始安装 设置root密码 ADH-password 创建用户 等待安装完成 重启 接受许可证 Centos 7 64安装完成 安装mysql开始 Putty连接指定服务器 在 opt目录下新建download目录 将mysql文件传到该目录下 查看linux服务器的…

vscode 怎么下载 vsix 文件?

参考&#xff1a;https://marketplace.visualstudio.com/items?itemNameMarsCode.marscode-extension 更好的办法&#xff1a;直接去相关插件的 github repo 下载老版本 https://github.com/VSCodeVim/Vim/releases?page5 或者&#xff0c;去 open-vsx.org 下载老版本 点击这…

医院管理系统

私信我获取源码和万字论文&#xff0c;制作不易&#xff0c;感谢点赞支持。 医院管理系统 摘要 随着信息互联网信息的飞速发展&#xff0c;医院也在创建着属于自己的管理系统。本文介绍了医院管理系统的开发全过程。通过分析企业对于医院管理系统的需求&#xff0c;创建了一个计…

AWS账号提额

Lightsail提额 控制台右上角&#xff0c;用户名点开&#xff0c;选择Service Quotas 在导航栏中AWS服务中找到lightsail点进去 在搜索框搜索instance找到相应的实例类型申请配额 4.根据自己的需求选择要提额的地区 5.根据需求来提升配额数量,提升小额配额等大约1小时生效 Ligh…

SprinBoot整合KafKa的使用(详解)

前言 1. 高吞吐量&#xff08;High Throughput&#xff09; Kafka 设计的一个核心特性是高吞吐量。它能够每秒处理百万级别的消息&#xff0c;适合需要高频次、低延迟消息传递的场景。即使在大规模分布式环境下&#xff0c;它也能保持很高的吞吐量和性能&#xff0c;支持低延…

Day52 | 动态规划 :单调栈 每日温度下一个更大的元素I下一个更大元素II

Day52 | 动态规划 &#xff1a;单调栈 每日温度&&下一个更大的元素I&&下一个更大元素II 单调栈【基础算法精讲 26】_哔哩哔哩_bilibili 及时去掉无用数据&#xff0c;保证栈中元素有序 文章目录 Day52 | 动态规划 &#xff1a;单调栈 每日温度&&下一…

第30天:安全开发-JS 应用NodeJS 指南原型链污染Express 框架功能实现审计0

时间轴&#xff1a; 演示案例&#xff1a; 环境搭建-NodeJS-解析安装&库安装 功能实现-NodeJS-数据库&文件&执行 安全问题-NodeJS-注入&RCE&原型链 案例分析-NodeJS-CTF 题目&源码审计 开发指南-NodeJS-安全 SecGuide 项目、 环境搭建-NodeJ…

Java与AWS S3的文件操作

从零开始&#xff1a;Java与AWS S3的文件操作 一、什么是 AWS S3&#xff1f;AWS S3 的特点AWS S3 的应用场景 二、Java整合S3方法使用 MinIO 客户端操作 S3使用 AWS SDK 操作 S3 &#xff08;推荐使用&#xff09; 三、总结 一、什么是 AWS S3&#xff1f; Amazon Simple Sto…

Unity中的数学应用 之 插值函数处理角色朝向 (初中难度 +Matlab)

CodeMonkey教程&#xff1a; https://www.youtube.com/watch?vQDWlGOocKm8 Siki学院汉化教程&#xff1a;如何使用Unity开发分手厨房&#xff08;胡闹厨房&#xff09;-Unity2023 - SiKi学院|SiKi学堂 - unity|u3d|虚幻|ue4/5|java|python|人工智能|视频教程|在线课程 版本&am…

专业解析 .bashrc 中 ROS 工作空间的加载顺序及其影响 ubuntu 机器人

专业解析 .bashrc 中 ROS 工作空间的加载顺序及其影响 在使用 ROS&#xff08;Robot Operating System&#xff09;进行开发时&#xff0c;通常会涉及多个 Catkin 工作空间&#xff08;Catkin Workspace&#xff09;。这些工作空间包含不同的 ROS 包和节点&#xff0c;可能相互…