【线程】Java多线程代码案例(2)

【线程】Java多线程代码案例(2)

      • 一、定时器的实现
        • 1.1Java标准库定时器
        • 1.2 定时器的实现
      • 二、线程池的实现
        • 2.1 线程池
        • 2.2 Java标准库中的线程池
        • 2.3 线程池的实现

一、定时器的实现

1.1Java标准库定时器
import java.util.Timer;
import java.util.TimerTask;public class ThreadDemo5 {public static void main(String[] args) throws InterruptedException {Timer timer =new Timer();timer.schedule(new TimerTask() {@Overridepublic void run() {System.out.println("1000");}},1000);System.out.println("hello main");}
}
1.2 定时器的实现

首先考虑,定时器中都需要都需要实现哪些元素呢?

  1. 需要有一个线程,负责掐时间
  2. 还需要有一个队列,能够保存所有添加进来的任务,这个队列要带有阻塞功能
    因为这个任务,要先执行时间小的,再执行时间大的。此处我们可以实现一个优先级队列。那么时间小的任务就始终排在第一位,我们只需要关注队首元素是否到时间,如果队首没有到时间,那么后续其他元素,也一定没有到时间。

首先定义任务类,包含要执行的任务和时间

class MyTimerTask implements Comparable<MyTimerTask>{//执行时间private long time;//持有一个Runnableprivate Runnable runnable;public MyTimerTask(Runnable runnable,long delay){this.time=System.currentTimeMillis()+delay;this.runnable=runnable;}//实际要执行的任务public void run(){runnable.run();}public long getTime() {return time;}@Override//因为要加入优先级队列,必须能比较public int compareTo(MyTimerTask o) {return (int)(this.time-o.time);}
}

定义计时器

class MyTimer{//持有一个线程负责计时private Thread t=null;//优先级队列private PriorityQueue<MyTimerTask> queue =new PriorityQueue<>();//前面实现阻塞队列的逻辑,加锁private Object locker =new Object();//添加任务public void schedule(Runnable runnable,long delay){}//构造方法//注意执行任务并不需要我们写一个方法在main()函数中调用//这个是到时间自动执行的public MyTimer(){t=new Thread(()->{while(true){//到时间执行任务的逻辑}});}
}

那接下来我们就来分别实现这里的schedule方法和构造函数中执行任务的逻辑:
schedule():

public void schedule(Runnable runnable,long delay){//入队列和出队列都需要打包成“原子性”的操作,加锁实现synchronized(locker){//新建任务MyTimerTask task=new MyTimerTask(runnable,delay);//加入队列queue.offer(task);//参考前面阻塞队列的实现,当队列为空时wait(),加入元素后notify()locker.notify();}
}

构造方法:

public MyTimer(){t=new Thread(()->{while(true){try{synchronized(locker){while(queue.isEmpty()){//阻塞直到加入新的任务后被notify()唤醒locker.wait();}//查看队首元素//peek不会将元素弹出MyTimerTask task=queue.peek;if(System.currentTimeMillis() >= task.getTime()){queue.poll();task.run();}else{//阻塞,释放锁(允许继续添加任务)//设置最大阻塞时间,阻塞到这个时间到了locker.wait(task.getTime()-System.currentTimeMillis());}}catch (InterruptedException e) {break;}}});	//启动线程t.start();
}

写到这里,就大功告成了,我们在main()函数中试验看一下运行结果:

public class ThreadDemo5{public static void main(String[] args) {MyTimer timer=new MyTimer();timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println(3000);}},3000);timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println(2000);}},2000);timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println(1000);}},1000);Thread.sleep(4000);timer.cancel();}
}

这里我们再加一个方法,我们希望任务执行完成后,能够主动结束这个线程:

public void cancel(){t.interrupt();
}

这里需要考虑线程被提前唤醒抛出的异常,因此在构造方法中将捕获异常的操作改为break;
在这里插入图片描述
计时器完整代码:

import java.util.PriorityQueue;class MyTimerTask implements Comparable<MyTimerTask>{//执行时间private long time;//持有一个Runnableprivate Runnable runnable;public MyTimerTask(Runnable runnable,long delay){this.time=System.currentTimeMillis()+delay;this.runnable=runnable;}//实际要执行的任务public void run(){runnable.run();}public long getTime() {return time;}@Overridepublic int compareTo(MyTimerTask o) {return (int)(this.time-o.time);}
}class MyTimer{//持有一个线程负责计时private Thread t=null;//任务队列——>优先级队列private PriorityQueue<MyTimerTask> queue =new PriorityQueue<>();//锁对象private Object locker=new Object();public void schedule(Runnable runnable,long delay){synchronized (locker) {//新建任务MyTimerTask task = new MyTimerTask(runnable, delay);//加入队列queue.offer(task);locker.notify();}}public void cancel(){t.interrupt();}public MyTimer(){t = new Thread(() -> {while (true) {try {synchronized (locker) {while (queue.isEmpty()) {//阻塞locker.wait();}//查看队首元素MyTimerTask task = queue.peek();if (System.currentTimeMillis() >= task.getTime()) {queue.poll();task.run();} else {//阻塞locker.wait(task.getTime()-System.currentTimeMillis());}}} catch (InterruptedException e) {break;}}});t.start();}
}
public class ThreadDemo5{public static void main(String[] args) throws InterruptedException {MyTimer timer=new MyTimer();timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println(3000);}},3000);timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println(2000);}},2000);timer.schedule(new Runnable() {@Overridepublic void run() {System.out.println(1000);}},1000);Thread.sleep(4000);timer.cancel();}
}

二、线程池的实现

2.1 线程池

最初我们提到线程这个概念,其实是一个“轻量级进程”。他的优势在于无需频繁地向系统申请/释放内存,提高了效率。但是随着线程的增多,频繁地创建/销毁线程也是一个很大的开销。解决方案有两种:

  1. 轻量级线程(协程),Java 21中引入了虚拟线程,就是这个东西。协程主要在Go语言中有较好的运用。
  2. 其次就是引入线程池的概念,无需频繁创建/销毁线程,而是一次性的创建好许多线程,每次直接取用,用完了放回线程池中。

为什么从线程池里取线程,会比从系统中申请更高效。
本质上在于去线程池里取线程,是一个用户态的操作,而向系统申请线程是一个内核态的操作。
在这里插入图片描述
还是以去银行取钱为例,向系统申请线程,就相当于找工作人员,在柜台取钱(工作人员收到请求后可能不会立即给你取钱),相对低效;而从线程池中取用线程,则相当于从ATM机里面取钱(从ATM机里面取钱是可以立即取到的),相对高效。

2.2 Java标准库中的线程池

在这里插入图片描述
这里我们可以细看一下这里的参数:

  1. corePoolSize(核心线程数)
    一个线程池里,最少要有多少个线程,相当于正式工,不会被销毁。
  2. maximumPoolSize(最大线程数)
    一个线程池里,最多要有多少个线程,相当于临时工,一段时间不干活就被销毁。
  3. keepAliveTime
    临时工允许的空闲时间,超过这个时间,就被销毁。
  4. unit
    keepAliveTime的时间单位
  5. BlockingQueue workQueue
    传递任务的阻塞队列
  6. threadFactory
    创建线程的工厂,参与具体的创建线程的工作。
    这里涉及到工厂模式,试想这样的代码能否运行:
class Point{//笛卡尔坐标系public point(double x,double y){...}//极坐标系public point(double r,double a){...}
}

像这样的代码是无法运行的。因为他们具有相同的方法名和参数列表,无法完成重载。那如果确实想完成这样的操作,该怎么做呢?

class Point{public static Point makePointByXY(double x, double y){Point p=new Point();p.setX(x);p.setY(y);return p;}public static Point makePointByRA(double r,double a){Point p=new Point();p.setR(r);p.setA(a);return p;}
}
Point p=Point.makePointByXY(x,y);
Point p=Point.makePointByRA(r,a);

总的来说,通过静态方法封装new操作,在方法内部设定不同的属性完成对象的初始化,构造对象的过程,就是工厂模式。

  1. RejectedExecutionHandler handler
    拒绝策略。如果这里的阻塞队列满了,此时要添加任务,就需要有一个应对策略。
策略含义备注
AbortPolicy()超过负荷,抛出异常所有任务都不做了
CallerRunsPolicy()调用者负责处理多出来的任务所有任务都要做,新加的任务由添加任务的线程做
DiscardOldestPolicy()丢弃队列中最老的任务不做最老的任务
DiscardPolicy()丢弃新来的任务不做最新的任务

由于ThreadPoolExecutor本身用起来比较复杂,因此标准库还提供了一个版本,把ThreadPoolExecutor给封装了一下。Executors 工厂类,通过这个类来创建不同的线程池对象(内部把ThreadPoolExecutor创建好了并且设置了不同的参数)
大致有这么几种方法:

方法用途
newScheduleThreadExecutor()创建定时器线程,延时执行任务
newSingleThreadExecutor()只包含单个线程的线程池
newCachedThreadExecutor()线程数目能够动态扩容
newFixedThreadExecutor()线程数目固定
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;public class ThreadDemo6 {public static void main(String[] args) {ExecutorService service=Executors.newFixedThreadPool(4);service.submit(new Runnable() {@Overridepublic void run() {System.out.println("hello");}});}
}

那么,对于一个多线程任务,创建多少个线程合适呢?

  1. 如果任务都是CPU密集型的(大部分时间在CPU上执行),此时线程数不应超过逻辑核心数;
  2. 如果任务都是IO密集型的(大部分时间在等待IO),此时线程数可以远远超过逻辑核心数;
  3. 由于实际的任务都是两种任务混合型的,一般通过实验的方式来得到最合适的线程数。
2.3 线程池的实现

我们可以实现一个简单的线程池(固定线程数目的线程池),要完成以下任务:

  1. 提供构造方法,指定创建多少个线程;
  2. 在构造方法中,创建线程;
  3. 有一个阻塞队列,能够执行要执行的任务;
  4. 提供submit()方法,添加新的任务
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;class MyThreadPoolExecutor{private List<Thread> threadList=new ArrayList<>();//阻塞队列private BlockingQueue<Runnable> queue=new ArrayBlockingQueue<>(10);public MyThreadPoolExecutor(int n){for(int i=0;i<n;i++){Thread t=new Thread(()-> {while (true) {try {//take操作也带有阻塞Runnable runnable = queue.take();runnable.run();} catch (InterruptedException e) {throw new RuntimeException(e);}}});t.start();threadList.add(t);}}public void submit(Runnable runnable) throws InterruptedException {//put操作带有阻塞功能queue.put(runnable);}
}
public class ThreadDemo6 {public static void main(String[] args) throws InterruptedException {MyThreadPoolExecutor executor=new MyThreadPoolExecutor(4);for(int i=0;i<1000;i++){int n=i;executor.submit(new Runnable() {@Overridepublic void run() {System.out.println("执行任务:"+n+",当前线程:"+Thread.currentThread().getName());}});}}
}

运行结果
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/62266.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云原生时代的轻量级反向代理Traefik

Traefik 是一个用于路由和管理网络流量的反向代理&#xff0c;同时也是一个支持多种协议&#xff08;HTTP、HTTPS、TCP、UDP&#xff09;的负载均衡器。它通过自动服务发现和动态配置&#xff0c;帮助开发者和运维团队轻松管理复杂的应用架构。 Traefik 的主要特点如下&#x…

JavaEE---计算机是如何工作的?

1.了解冯诺依曼体系结构 2.CPU的核心概念,CPU的两个重要指标(核心数和频率) 3.CPU执行指令的流程(指令表,一条一条指令,取指令,解析指令,执行指令) 4.操作系统核心概念(管理硬件,给软件提供稳定的运行环境) 5.进程的概念(运行起来的程序和可执行文件的区别) 6.进程的管理(…

【C++】简单数据类型详解

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;字符型&#xff08;char&#xff09;1.1 ASCII 码表 &#x1f4af;整型&#xff08;int&#xff09;2.1 整型的分类2.2 有符号和无符号整型2.3 跨平台差异2.4 整型数据类型…

Vue构建错误解决:(error TS6133)xxx is declared but its value is never read.

TypeScript会检查代码中未使用的变量&#xff0c;如果vscode安装了Vue的语法检查工具&#xff0c;会看到告警提示&#xff0c;再npm run build的时候&#xff0c;这个警告会变成错误 解决方案1&#xff1a;删除定义了未使用的变量 推荐使用这种方案&#xff0c;能保证代码的质…

泷羽sec---shell作业

作业一 写计算器 使用bc命令 需要进行安装bc 代码如下&#xff1a; #!/bin/bash echo "-----------------------------------" echo "输入 f 退出" echo "可计算小数和整数" echo "用法如&#xff1a;1.12.2" echo "------…

混淆零碎知识点

minifyEnabled true //混淆开关 zipAlignEnabled true // Zipalign优化 shrinkResources true // 移除无用的resource文件 &#xff08;必须要混淆开了之后才才可以设置为true&#xff09; proguard-rules.pro 为混淆文件 //整个文件保留 不被混淆 -keep class com.cn…

DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection

DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection 清华、苹果 个人感觉 Introduction 很自然的让读者理解作者问题的提出&#xff0c;也有例子直接证明了这个问题的存在&#xff0c;值得借鉴&#xff01;&#xff01; Related work写的也很不…

第T9周:Tensorflow实现猫狗识别(2)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 具体实现 &#xff08;一&#xff09;环境 语言环境&#xff1a;Python 3.10 编 译 器: PyCharm 框 架: Tensorflow 2.10.0 &#xff08;二&#xff09;具体…

分布式锁的实现原理

作者&#xff1a;来自 vivo 互联网服务器团队- Xu Yaoming 介绍分布式锁的实现原理。 一、分布式锁概述 分布式锁&#xff0c;顾名思义&#xff0c;就是在分布式环境下使用的锁。众所周知&#xff0c;在并发编程中&#xff0c;我们经常需要借助并发控制工具&#xff0c;如 mu…

搭建帮助中心到底有什么作用?

在当今快节奏的商业环境中&#xff0c;企业面临着日益增长的客户需求和竞争压力。搭建一个有效的帮助中心对于企业来说&#xff0c;不仅是提升客户服务体验的重要途径&#xff0c;也是优化内部知识管理和提升团队效率的关键。以下是帮助中心在企业运营中的几个关键作用&#xf…

深入浅出剖析典型文生图产品Midjourney

2022年7月,一个小团队推出了公测的 Midjourney,打破了 AIGC 领域的大厂垄断。作为一个精调生成模型,以聊天机器人方式部署在 Discord,它创作的《太空歌剧院》作品,甚至获得了美国「数字艺术/数码摄影」竞赛单元一等奖。 这一事件展示了 AI 在绘画领域惊人的创造力,让人们…

python+docx:(二)页眉页脚、表格操作

目录 页眉页脚 表格 表格样式 插入表格 插入行/列 合并单元格 单元格 页眉页脚 页眉页脚操作需要访问文件的section&#xff0c;可通过添加页脚来添加页码。 from docx import Document from docx.enum.text import WD_PARAGRAPH_ALIGNMENT, WD_ALIGN_PARAGRAPH, WD_CO…

Matlab Simulink 电力电子仿真-单相电压型半桥逆变电路分析

目录 一、单相电压型半桥逆变电路仿真模型 1.电路模型 2.电路模型参数 二、仿真分析 三、总结 1.优缺点 2.应用场景 一、单相电压型半桥逆变电路仿真模型 1.电路模型 单相电压型半桥逆变电路是一种常见的逆变电路&#xff0c;主要用于将直流电源转换为交流电源。 &…

C++入门——“C++11-lambda”

引入 C11支持lambda表达式&#xff0c;lambda是一个匿名函数对象&#xff0c;它允许在函数体中直接定义。 一、初识lambda lambda的结构是&#xff1a;[ ] () -> 返回值类型 { }。从左到右依次是&#xff1a;捕捉列表 函数参数 -> 返回值类型 函数体。 以下是一段用lam…

如何保护LabVIEW程序免遭反编译

在正常情况下&#xff0c;LabVIEW程序&#xff08;即编译后的可执行文件或运行时文件&#xff0c;如 .exe 或 .llb&#xff09;无法直接被反编译出源码。然而&#xff0c;有一些需要特别注意的点&#xff1a; 1. LabVIEW的编译机制 LabVIEW编译器会将源码&#xff08;.vi文件&a…

提升76%的关键-在ModelMapper中实现性能提升的几种方法

目录 前言 一、ModelMapper基础知识 1、深入ModelMapper 2、深入Configuration配置 3、深入MappingEngineImpl 二、默认加载模式 1、基础测试代码 三、持续优化&#xff0c;慢慢提升 1、增加忽略字段 2、设置忽略空值模式 3、设置命名模式 4、采用精准匹配模式 四、…

【C语言】结构体、联合体、枚举类型的字节大小详解

在C语言中&#xff0c;结构体&#xff08;struct&#xff09;和联合体&#xff08;union&#xff09; 是常用的复合数据类型&#xff0c;它们的内存布局和字节大小直接影响程序的性能和内存使用。下面为大家详细解释它们的字节大小计算方法&#xff0c;包括对齐规则、内存分配方…

【优选算法】位运算

目录 常见位运算总结1、基础位运算2、给一个数n&#xff0c;确定它的二进制位的第x位上是0还是13、将一个数n的二进制位的第x位改成14、将一个数n的二进制位的第x位改成05、位图的思想6、提取一个数n的二进制位中最右侧的17、将一个数n的二进制位中最右侧的1变为08、位运算的优…

jQuery九宫格抽奖,php处理抽奖信息

功能介绍 jQuery九宫格抽奖是一种基于jQuery库的前端抽奖效果。通过九宫格的形式展示抽奖项&#xff0c;用户点击抽奖按钮后&#xff0c;九宫格开始旋转&#xff0c;最终停在一个随机位置上&#xff0c;此位置对应的抽奖项为用户的中奖结果。 本文实现九宫格的步骤为&#xf…

AI界的信仰危机:单靠“规模化”智能增长的假设,正在面临挑战

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…