ArcGIS pro中的回归分析浅析(加更)关于广义线性回归工具的补充内容

 在回归分析浅析中篇的文章中,

有人问了一个问题:

案例里的calls数据貌似离散,更符合泊松模型,为啥不采用泊松而采用高斯呢?

确实,在中篇中写道:

在这个例子中我们为了更好地解释变量,使用高斯模型代替更适合的泊松模型。

这句话该怎么理解呢?

一般情况下,拿到研究数据之后,如果我们计划使用GLR工具,首先需要判断使用哪个模型,使用哪个模型是由数据来确定的,当数据都是整数时,究竟是用高斯还是泊松呢?

我们知道,高斯模型需要满足数据正态分布。在Pro中如何看数据是否正态分布呢?

打开Pro,在内容列表中选择包含因变量的原始图层,选择创建图表,点击直方图就可以查看数据的分布形态了。

在图表属性中选择数值变量为Calls

存在变换三种形式,无变换、对数变换以及平方根变换。默认情况下选择无变换。

其中横轴是Calls值,纵轴为Calls的数量。

很显然,当前数据是偏斜的,并不是正态分布的。这种情况下是不建议选择高斯模型,更推荐使用泊松的。

但是很多情况下,高斯的性能或者说拟合度都要好于泊松。(大家可以尝试使用本例中的数据,再结合GLR工具中的泊松模型得出该模型的拟合度)

所以为了向高斯模型靠拢,提高模型精度,会尝试将数据进行变换。

你可以理解为在某种程度上,变换可以认为并非在调整数据,而是换个角度看数据,比如说圆柱体完全水平的看截面是正方形,而从顶上垂直俯视是圆形。怎么看(变换),都不会改变数据的最终表现,只是让我们从某个角度更容易的理解它而已。

god xia,公众号:虾神说D[虾答]莫兰指数计算时只能用原始数据还是也能用取对数后的数据?

以上内容引自虾神卢(下一篇会附上他的公众号)关于变换内容的说明

将数据进行变换,也就是尝试使用对数变换以及平方根变换,再来确定数据是不是正态分布的。如果变换后数据是正态分布的,我们仍然可以选择高斯模型来对变量之间的线性关系进行建模。

在这里我们尝试使用平方根变换。

很不幸。仍然不是正态分布。

但是上述这种,数据变换之后呈现正态分布的情况确实存在。例如这里我们使用了房价数据进行比较。

房价无变换       房价对数变换

非正态分布        呈正态分布

所以,严格来说,本例中使用高斯模型来进行数据的分析和预测是存在问题的。(同学们千万注意)

本例中,我们的本意是想讲清楚高斯模型中的众多的结果指标,并得出GLR工具在本例中并不平稳的结论。大家可以理解其方法和思路。

同一数据泊松分布的结果如下

地图视图结果展示

地图视图中增加了GLRPossionData911Calls图层。并使用偏差残差(非标准化残差)来进行渲染。

内容列表中的GLRData911Calls图层

同时增加了3个图表。图表与结果是相互印证的,因此在这里我们主要分析GLRPossionData911Calls图层的内容以及结果运行出来之后的详细信息。

与原始的ObsData911Calls相比较,保留了全部要素的Calls、Pop, Jobs, LowEduc, Dst2UrbCen也就是因变量和解释变量属性,增加了Raw Predicted(CALLS)、Predicted(CALLS)字段也就是因变量的预测值,以及Deviance Residual(偏差残差)这三个字段。

其中偏差残差也反应了预测值与实际值之间的差异,这个与标准残差不同,没有大于2.5或者小于-2.5的限制。

再来看泊松模型的GLR结果

可以发现结果与高斯模型的结果类似,都包含了系数、概率和VIF。这些要求比如概率带星号,VIF不能大于7.5的要求都是相同的。

GLR的诊断中已解释偏差表明因变量中有多少变化可以由模型解释,也叫作模型拟合优度,类似高斯模型中的R方。

从这里我们也能看出,本例中,泊松的拟合结果比高斯的要低。

本例中,我们提供的数据不是特别理想,导致模型的选择容易混淆。在云盘连接中,我们还补充了房产数据,符合高斯模型,大家可以尝试一下。链接: 

链接:https://pan.baidu.com/s/17KFw8l5PeBQMAgtAjKU80Q?pwd=1vsl 
提取码:1vsl 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/61976.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络 第4章 网络层

计算机网络 (第八版)谢希仁 第 4 章 网络层4.2.2 IP地址**无分类编址CIDR**IP地址的特点 4.2.3 IP地址与MAC地址4.2.4 ARP 地址解析协议4.2.5 IP数据报的格式题目2:IP数据报分片与重组题目:计算IP数据报的首部校验和(不正确未改) …

极狐GitLab 17.6 正式发布几十项与 DevSecOps 相关的功能【三】

GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料: 极狐GitLab 官网极狐…

直接抄作业!Air780E模组LuatOS开发:位运算(bit)示例

在嵌入式开发中,位运算是一种高效且常用的操作技巧。本文将介绍如何使用Air780E模组和LuatOS进行位运算,并通过示例代码帮助读者快速上手。 一、位运算概述 位运算是一种在计算机系统中对二进制数位进行操作的运算。由于计算机内部数据的存储和处理都是…

学习threejs,使用设置lightMap光照贴图创建阴影效果

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.MeshLambertMaterial…

11.23作业

4、将整个 /etc 目录下的文件全部打包并用 gzip 压缩成/back/etcback.tar.gz 5、使当前用户永久生效的命令别名:写一个命令命为hello,实现的功能为每输入一次hello命令,就有hello,everyone写入文件/file.txt中。 6、创建mygroup组群&#xf…

网安瞭望台第5期 :7zip出现严重漏洞、识别网络钓鱼诈骗的方法分享

国内外要闻 7 - Zip存在高危漏洞,请立刻更新 2024 年 11 月 24 日,do son 报道了 7 - Zip 中存在的一个高严重性漏洞 CVE - 2024 - 11477。7 - Zip 是一款广受欢迎的文件压缩软件,而这个漏洞可能会让攻击者在存在漏洞的系统中执行恶意代码。…

ESC字符背后的故事(27 <> 033 | x1B ?)

ANSI不可见字符转义,正确的理解让记忆和书写变得丝滑惬意。 (笔记模板由python脚本于2024年11月26日 15:05:33创建,本篇笔记适合python 基础扎实的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free&#xf…

【MyBatis】全局配置文件—mybatis.xml 创建xml模板

文章目录 模板文件配置元素typeAliasessettings 模板文件 创建模板 按照顺序打开【File】–>【settings】–>【Editor】–>【File and Code Templates】&#xff08;或直接搜索&#xff09; <?xml version"1.0" encoding"UTF-8" ?> <…

python的脚本式编程

一. 简介 前面简单学习了一下 python的交互式编程&#xff0c;文章如下&#xff1a; python的交互式编程-CSDN博客 本文来简单学习一下 python的脚本式编程。 脚本式编程是 Python 编程中最常用的方式之一&#xff0c;特别适合于编写和维护较大的程序或脚本。 二. 脚本式编…

flink学习(8)——窗口函数

增量聚合函数 ——指窗口每进入一条数据就计算一次 例如&#xff1a;要计算数字之和&#xff0c;进去一个12 计算结果为20&#xff0c; 再进入一个7 ——结果为27 reduce aggregate(aggregateFunction) package com.bigdata.day04;public class _04_agg函数 {public static …

uname -m(machine) 命令用于显示当前系统的机器硬件架构(Unix Name)

文章目录 关于 arm64 架构检查是否安装了 Rosetta 2其他相关信息解释&#xff1a;命令功能&#xff1a;示例&#xff1a; dgqdgqdeMac-mini / % uname -m arm64您运行的 uname -m 命令显示您的系统架构是 arm64。这意味着您的 Mac Mini 使用的是 Apple 的 M1 或更新的芯片&…

QUICK调试camera-xml解析

本文主要介绍如何在QUICK QC6490使能相机模组。QC6490的相机基于CameraX的框架&#xff0c;只需通过配置XML文件&#xff0c;设置相机模组的相关参数&#xff0c;就可以点亮相机。本文主要介绍Camera Sensor Module XML和Camera Sensor XML配置的解析&#xff0c;这中间需要cam…

10、PyTorch autograd使用教程

文章目录 1. 相关思考2. 矩阵求导3. 两种方法求jacobian 1. 相关思考 2. 矩阵求导 假设我们有如下向量&#xff1a; y 1 3 x 1 5 [ w T ] 5 3 b 1 3 \begin{equation} y_{1\times3}x_{1\times5}[w^T]_{5\times3}b_{1\times3} \end{equation} y13​x15​[wT]53​b13​​…

AIGC-----AIGC在虚拟现实中的应用前景

AIGC在虚拟现实中的应用前景 引言 随着人工智能生成内容&#xff08;AIGC&#xff09;的快速发展&#xff0c;虚拟现实&#xff08;VR&#xff09;技术的应用也迎来了新的契机。AIGC与VR的结合为创造沉浸式体验带来了全新的可能性&#xff0c;这种组合不仅极大地降低了VR内容的…

Java项目实战II基于微信小程序的校运会管理系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导 一、前言 在充满活力与激情的校园生活中&#xff0c;校运会不仅是…

计算机网络的类型

目录 按覆盖范围分类 个人区域网&#xff08;PAN&#xff09; 局域网&#xff08;LAN&#xff09; 城域网&#xff08;MAN&#xff09; 4. 广域网&#xff08;WAN&#xff09; 按使用场景和性质分类 公网&#xff08;全球网络&#xff09; 外网 内网&#xff08;私有网…

第R4周:LSTM-火灾温度预测(TensorFlow版)

>- **&#x1f368; 本文为[&#x1f517;365天深度学习训练营]中的学习记录博客** >- **&#x1f356; 原作者&#xff1a;[K同学啊]** 往期文章可查阅&#xff1a; 深度学习总结 任务说明&#xff1a;数据集中提供了火灾温度&#xff08;Tem1&#xff09;、一氧化碳浓度…

手搓人工智能—聚类分析(下)谱系聚类与K-mean聚类

“无论结果如何&#xff0c;至少我们存在过” ——《无人深空》 前言 除了上一篇手搓人工智能-聚类分析&#xff08;上&#xff09;中提到的两种简单聚类方式&#xff0c;还有一些更为常用、更复杂的聚类方式&#xff1a;谱系聚类&#xff0c;K-均值聚类。 谱系聚类 谱系聚类…

文件内容扫描工具

简介 文件扫描助手是一款基于Vite Vue 3 Electron技术栈开发的跨平台桌面应用程序。它提供了强大的文件内容搜索功能&#xff0c;支持Word、Excel、PDF、PPT等常见办公文档格式。用户可以通过关键词快速定位到包含特定内容的文件&#xff0c;极大地提高了文件管理和查找效率…

函数类型注释和Union联合类型注释

函数类型注释格式&#xff08;调用时提示输入参数的类型&#xff09;: )def 函数名(形参名:类型&#xff0c;形参名:类型&#xff09;->函数返回值类型: 函数体 Union联合类型注释&#xff08;可注释多种类型混合的变量&#xff09;格式: #先导入模块 from typing import…