GPT-1

GPT 系列是 OpenAI 的一系列预训练模型,GPT 的全称是 Generative Pre-Trained Transformer,顾名思义,GPT 的目标是通过 Transformer,使用预训练技术得到通用的语言模型。目前已经公布论文的有 GPT-1、GPT-2、GPT-3。

最近非常火的 ChatGPT 也是 GPT 系列模型,主要基于 GPT-3.5 进行微调。OpenAI 团队在 GPT3.5 基础上,使用人类反馈强化学习 (RLHF) 训练。首先使用了人类标注师撰写约1.2w-1.5w条问答数据,并用其作为基础数据预训练。随后让预训练好的模型(SFT)针对新问题列表生成若干条回答,并让人类标注师对这些回答进行排序。这些回答的排名内容将以配对比较的方式生成一个新的奖励模型(RM)。最后让奖励模型在更大的数据集上重新训练SFT,并将最后两个步骤反复迭代以获得最终的模型。

在介绍 GPT-1 之前,我们先让 ChatGPT 帮我们回答下 GPT 系列模型的基础信息,如下图所示。

前言

GPT-1 是 OpenAI 在论文 Improving Language Understanding by Generative Pre-Training 中提出的生成式预训练语言模型。该模型的核心思想:通过二段式的训练,第一个阶段是利用语言模型进行预训练(无监督形式),第二阶段通过 Fine-tuning 的模式解决下游任务(监督模式下)。GPT-1 可以很好地完成若干下游任务,包括文本分类、文本蕴含、语义相似度、问答。在多个下游任务中,微调后的 GPT-1 系列模型的性能均超过了当时针对特定任务训练的 SOTA 模型。

备注:文本蕴含(Textual entailment)是指两个文本片段有指向关系。给定一个前提文本,根据这个前提去推断假说文本与前提文本的关系,一般分为蕴含关系(entailment)和矛盾关系(contradiction),蕴含关系表示从前提文本中可以推断出假说文本;矛盾关系即前提文本与假说文本矛盾。

1. GPT-1 模型结构

GPT-1模型结构

从上图可以看出,GPT-1 只使用了 Transformer 的 Decoder 结构,而且只是用了 Mask Multi-Head Attention。

Transformer 结构提出是用于机器翻译任务,机器翻译是一个序列到序列的任务,因此 Transformer 设计了Encoder 用于提取源端语言的语义特征,而用 Decoder 提取目标端语言的语义特征,并生成相对应的译文。GPT-1 目标是服务于单序列文本的生成式任务,所以舍弃了关于 Encoder 部分以及包括 Decoder 的 Encoder-Dcoder Attention 层(也就是 Decoder中 的 Multi-Head Atteion)。

GPT-1 保留了 Decoder 的Masked Multi-Attention 层和 Feed Forward 层,并扩大了网络的规模。将层数扩展到12层,GPT-1 还将Attention 的维数扩大到768(原来为512),将 Attention 的头数增加到12层(原来为8层),将 Feed Forward 层的隐层维数增加到3072(原来为2048),总参数达到1.5亿。

将预训练和 Fine-tuning 结合起来,GPT-1 的结构可以用下面的图表示:

图2:GPT-1 结构(包含预训练与 Fine-tuning)

图中最下层 E 表示输入句子单词的 Embedding,中间的 Trm 表示 GPT 的单层 Transformer,最上层的 T 表示预测输出。

除了上面提到的,GPT-1 的 Transformer 结构还有哪些差异?

Q1:GPT-1 采用的是单向的语言模型?

A1:在 GPT 中采用了 Masked Multi-Head Attention,而 Masked Multi-Head Attention 只利用上文对当前位置的值预测,所以 GPT-1 被认为是单向的语言模型。

Q2:GPT-1 中 Position Encoding 的操作有何不同?

A2:在 Transformer 中,由于 Self-Attention 无法捕获文本的位置信息,因此需要对输入的词 Embedding 加入Position Encoding,在 Transformer 中采用了 sin 和 cos 的计算方法,而在 GPT-1 中,不再使用正弦和余弦的位置编码,而是采用与词向量相似的随机初始化,并在训练中进行更新。

从图1的最右侧可以看到,GPT-1 的训练包含两阶段,第一阶段是 GPT-1 模型的预训练过程,得到文本的语义向量;第二阶段是在具体任务上 Fine-tuning,以解决具体的下游任务。

2. 第一阶段:无监督预训练

对于 GPT-1 模型的预训练,同样采用标准语言模型,即通过上文预测当前的词,目标函数表示如下:

 其中k是窗口大小。

GPT-1 使用了12个 Transformer 模块,这里的 Transformer 模块是图1经过变体后的结构,只包含 Decoder 中的Mask Multi-Head Attention 以及后面的 Feed Forward,表示如下:

其中是当前单词u的上文单词向量(比如[3222, 439, 150, 7345, 3222, 439, 6514, 7945],其中数字3222是词在此表中的索引),是词向量矩阵(词的 Embedding 矩阵),是 position embedding, n是 Transformer 层数。

3. 第二阶段:有监督 Fine-tuning

在 GPT-1 模型的下游任务中,需要根据 GPT-1 的网络结构,对下游任务做适当的修改,具体如下图所示:

图3:GPT-1 用于下游任务

假设带有标签的数据集为C,其中,词的序列为 ,标签为y。词序列输入到预训练好的 GPT-1 模型中,经过最后一层 Transformer block 得到输出,然后输入到下游任务的线性层中,得到最终的预测输出:

 此是目标函数为:

 合并之前的预训练目标函数,最终的目标函数表示如下:

4. 不同下游任务的输入转换

针对不同的下游任务,需要对输入进行转换,从而能够适应 GPT-1 模型结构,比如:

  • 分类任务。只需要在输入序列前后分别加上开始(Start)和结束(Extract)标记

  • 句子关系任务。除了开始和结束标记,在两个句子中间还需要加上分隔符(Delim)

  • 文本相似性任务。与句子关系判断任务相似,不同的是需要生成两个文本表示 

  • 多项选择任务。文本相似任务的扩展,两个文本扩展为多个文本。

5. 代码实现

我们看一下ChatGPT是怎么实现的:

有个大致的流程,但是这里面没有体现出 GPT-1 的核心部分:Mask Multi-Head Attention,下一篇文章我们介绍具体的代码实现,并给一个具体的例子,方便大家理解。

总结

GPT-1 是2018年6月提出的模型,比 Bert 还早几个月,当时在9个NLP任务上取得了 SOTA 的效果,但 GPT-1 使用的模型规模和数据量都比较小,这也就促使了 GPT-2 的诞生。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/6144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go协程的底层原理(图文详解)

为什么要有协程 什么是进程 操作系统“程序”的最小单位进程用来占用内存空间进程相当于厂房,占用工厂空间 什么是线程 进程如果比作厂房,线程就是厂房里面的生产线: 每个进程可以有多个线程线程使用系统分配给进程的内存,线…

【linux-汇编-点灯之思路-程序】

目录 1. ARM汇编中的一些注意事项2. IMXULL汇编点灯的前序:3. IMXULL汇编点灯之确定引脚:4. IMXULL汇编点灯之引脚功能编写:4.1 第一步,开时钟4.2 第二步,定功能(MUX)4.3 第三步,定电…

服务器遭受攻击后的黑洞状态应对策略及防护机制解析

引言 在网络安全领域中,当服务器遭受大规模DDoS攻击或其他恶意流量冲击时,为了保护服务的稳定性和其他正常用户的使用体验,往往会采取一种紧急防护手段——将服务器置于黑洞状态。所谓黑洞状态,即网络服务商暂时屏蔽掉对服务器的…

“中国汉字”的英语表达|柯桥考级英语生活英语商务口语培训

汉字,又称中文字、中国字、方块字。汉字是表意文字,一个汉字通常表示汉语里的一个词或一个语素,这就形成了音、形、义统一的特点。 我们通常用“Chinese character”表示“汉字”而不用“Chinese word”. 🔴 例句: C…

QT:信号和槽

文章目录 信号和槽connect函数槽自定义槽第一种第二种 信号和槽 这里的信号和Linux的信号一样吗? 答案是差不多,但是也有一定的区别,而且也是两个不同的概念 信号有三个概念,一个是信号源,这个信号是由谁发送的&…

信息管理与信息系统就业方向及前景分析

信息管理与信息系统(IMIS)专业的就业方向十分广泛,包含计算机方向、企业信息化管理、数据处理和数据分析等,随着大数据、云计算、人工智能、物联网等技术的兴起,对能够处理复杂信息系统的专业人才需求激增,信息管理与信息系统就业…

Storm 技术揭秘:掌握实时大数据处理的终极神器!

Storm 是一个开源的分布式实时计算系统,由 Twitter 公司开发并贡献给 Apache 基金会。它可以处理大量的数据流,进行实时的数据挖掘、数据分析和数据可视化等任务。Storm 具有高容错性、可扩展性和低延迟的特点,适用于需要快速响应的场景&…

15、ESP32 Wifi

ESP32 的 WIFI 功能是模块内置的&#xff0c;通过 ESP32 的基础库调用一些函数就可以轻松使用它。 Wifi STA 模式&#xff1a; 让 ESP32 连接附近 WIFI&#xff0c;可以上网访问数据。 // 代码显示搜索连接附近指定的 WIFI // 通过 pin 按键可断开连接#include <WiFi.h>…

纯血鸿蒙APP实战开发——主页瀑布流实现

介绍 本示例介绍使用ArkUIWaterFlow组件和LazyForEach实现瀑布流场景。该场景多用于购物、资讯类应用。 效果图预览 使用说明 加载完成后显示整个列表&#xff0c;超过一屏时可以上下滑动。 实现思路 创建WaterFlowDataSource类&#xff0c;实现IDataSource接口的对象&…

JAVA面试之MQ

如何保证消息的可靠传输&#xff1f;如果消息丢了怎么办 数据的丢失问题&#xff0c;可能出现在生产者、MQ、消费者中。 &#xff08;1&#xff09;生产者发送消息时丢失&#xff1a; ①生产者发送消息时连接MQ失败 ②生产者发送消息到达MQ后未找到Exchange(交换机) ③生产者发…

第一次用ssh登录树莓派or linux服务器出现Permission denied (publickey)

authenticity of host ) cant be established ssh userip Permission denied (publickey) 解决办法&#xff1a; 第一步&#xff1a; PasswordAuthentication yes 第二步&#xff1a; service sshd restart 这两步一步都不能少 注意&#xff01;

如何搭建本地的 NPM 私有仓库 Nexus

NPM 本地私有仓库&#xff0c;是在本地搭建NPM私有仓库&#xff0c;对公司级别的组件库进行管理。在日常开发中&#xff0c;经常会遇到抽象公共组件的场景&#xff0c;在项目内部进行公用。新的项目开始时&#xff0c;也会拷贝一份创建一个新的项目&#xff0c;这样做不易于管理…

k8s部署maven项目

failed to verify certificate: x509: certificate signed by unknown authority 今天在执行kubectl get nodes的时候报的证书验证问题&#xff0c;看了一圈首次搭建k8s的都是高频出现的问题。 couldn’t get current server API group list: Get “https://kubernetes.docker…

虚拟机网络桥接模式无法通信,获取到的ip为169.254.X.X

原因&#xff1a;VMware自动选择的网卡可能不对 解决&#xff1a;编辑-虚拟网络编辑器-更改桥接模式-选择宿主机物理网卡&#xff0c;断开虚拟机网络连接后重新连接即可

能源监控新方案:IEC104转MQTT网关在新能源发电中的应用

需求背景 近些年&#xff0c;我国新能源产业快速发展&#xff0c;光伏、风电等新能源项目高速增长&#xff0c;新能源发电已经成为国家能源结构的重要组成部分。 打造数字化、智能化、信息化的电力物联网系统&#xff0c;实现光伏风电等新能源发电站的远程监控、远程维护是新能…

每日一题-贪心算法

目录 前言 买入股票的最佳时机(1) 买入股票的最好时机(2) 前言 当你踏上贪心算法的旅程&#xff0c;仿佛置身于一场智慧的盛宴&#xff0c;每一步都是对问题解决方案的审慎选择&#xff0c;每一次决策都是对最优解的向往。贪心算法以其简洁高效的特性&#xff0c;被广泛运用于…

【golang学习之旅】Go的 switch 分支语句

系列文章 【golang学习之旅】报错&#xff1a;a declared but not used 【golang学习之旅】Go 的基本数据类型 【golang学习之旅】Go 的循环结构 【golang学习之旅】Go里面 if 条件判断语句 目录 系列文章switch 分支fallthrough 关键字无条件 switch switch 分支 有些时候需…

esp32-cam 1. 出厂固件编译与测试

0. 环境 - ubuntu18 - esp32-cam - usb转ttl ch340 硬件连接 esp32-camch340板子U0RTXDU0TRXDGNDGND5V5V 1. 安装依赖 sudo apt-get install vim sudo apt install git sudo apt-get install git wget flex bison gperf python python-pip python-setuptools python-serial p…

Qt 信号槽中信号重名解决办法

1、类似与Qt4中的写法&#xff1a; 2、函数指针 3、泛型 connect(ui->combox, QOverload<int>::of(&QCombox::currentIndexChanged), this ,&mainwindow::onindexchange);

LLM应用:让大模型prompt总结生成Mermaid流程图

生成内容、总结文章让大模型Mermaid流程图展示&#xff1a; mermaid 美人鱼, 是一个类似 markdown&#xff0c;用文本语法来描述文档图形(流程图、 时序图、甘特图)的工具&#xff0c;您可以在文档中嵌入一段 mermaid 文本来生成 SVG 形式的图形 Prompt 示例&#xff1a;用横向…